Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 216 papers

Hydrazonoyl chlorides possess promising antitumor properties.

  • Mohamed A M El Gendy‎ et al.
  • Life sciences‎
  • 2022‎

the main purpose of this study was to identify new selective antitumor agents.


Association, Distribution, Liberation, and Rheological Balances of Alkyldimethylbenzylammonium Chlorides (C12-C16).

  • Zuzana Vitková‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

It is known that cationic surfactants have an antimicrobial effect and act as enhancers. This paper studies three cationic surfactants from the group of alkyldimethylbenzylammonium chlorides (dodecyl-, tetradecyl-, and hexadecyl). Interest is focused on the association of the surfactants with respect to temperature, partition balances and their influence on drug release, rheological properties, and the pH of hydrogels. The critical micelle concentrations (CMC) of the surfactants were estimated from dependencies of conductivity, density, spectrofluorimetry, and UV-VIS spectrophotometry on molarity in the temperature range of 25-50 °C. It was found that the temperature dependence of a CMC is U-shaped, with its minimum at 30 °C, and the CMC value decreases as the length of the chain increases. The pseudo-phase separation model was used for the calculation of various thermodynamic parameters, such as the Gibbs free energies (spontaneous process), enthalpies (exothermic process), and entropies of the micelles' formation, CMCs, and the degree of counterion binding. All thermodynamic parameters, as functions of the temperature, were estimated. It was found that partition coefficients increase as the length of the alkyl chain and the pH = (5.0-7.0) increase. The influences of surfactants, below and above the CMC, on drug (chlorhexidine dihydrochloride) release from hydrogels, rheological properties, and pH at 30 °C were studied. Also, the amounts of the released drug increase as the alkyl chains of the surfactants prolongate. The amounts of the released drug with the surfactant below the CMC are greater than that above the CMC. All hydrogels (regardless of the length of the alkyl chain) exhibit a non-Newtonian pseudo-plastic flow. The results obtained will be used in the formulation of the drug and surfactants into dosage forms.


Plant Uptake of Lactate-Bound Metals: A Sustainable Alternative to Metal Chlorides.

  • Lee J Opdahl‎ et al.
  • Biomolecules‎
  • 2021‎

Global agricultural intensification has prompted investigations into biostimulants to enhance plant nutrition and soil ecosystem processes. Metal lactates are an understudied class of organic micronutrient supplement that provide both a labile carbon source and mineral nutrition for plant and microbial growth. To gain a fundamental understanding of plant responses to metal lactates, we employed a series of sterile culture-vessel experiments to compare the uptake and toxicity of five metals (Zn, Mn, Cu, Ni, and Co) supplied in lactate and chloride salt form. Additionally, primary root growth in plate-grown Arabidopsis thaliana seedlings was used to determine optimal concentrations of each metal lactate. Our results suggest that uptake and utilization of metals in wheat (Triticum aestivum L.) when supplied in lactate form is comparable to that of metal chlorides. Metal lactates also have promotional growth effects on A. thaliana seedlings with optimal concentrations identified for Zn (0.5-1.0 µM), Mn (0.5-1.0 µM), Cu (0.5 µM), Ni (1.0 µM), and Co (0.5 µM) lactate. These findings present foundational evidence to support the use of metal lactates as potential crop biostimulants due to their ability to both supply nutrients and stimulate plant growth.


Hybrid Chlorides with Methylhydrazinium Cation: [CH3NH2NH2]CdCl3 and Jahn-Teller Distorted [CH3NH2NH2]CuCl3.

  • Jan A Zienkiewicz‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The synthesis, structural, phonon, optical, and magnetic properties of two hybrid organic-inorganic chlorides with monoprotonated methylhydrazinium cations (CH3NH2NH2+, MHy+), [CH3NH2NH2]CdCl3 (MHyCdCl3), and [CH3NH2NH2]CuCl3 (MHyCuCl3), are reported. In contrast to previously reported MHyMIICl3 (MII = Mn2+, Ni2+, and Co2+) analogues, neither compound undergoes phase transitions. The MHyCuCl3 has a crystal structure familiar to previous crystals composed of edge-shared 1D chains of the [CuCl5N] octahedra. MHyCuCl3 crystallizes in monoclinic P21/c symmetry with MHy+ cations directly linked to the Cu2+ ions. The MHyCdCl3 analogue crystallizes in lower triclinic symmetry with zig-zag chains of the edge-shared [CdCl6] octahedra. The absence of phase transitions is investigated and discussed. It is connected with slightly stronger hydrogen bonding between cations and the copper-chloride chains in MHyCuCl3 due to the strong Jahn-Teller effect causing the octahedra to elongate, resulting in a better fit of cations in the accessible space between chains. The absence of structural transformation in MHyCdCl3 is due to intermolecular hydrogen bonding between two neighboring MHy+ cations, which has never been reported for MHy+-based hybrid halides. Optical investigations revealed that the bandgaps in Cu2+ and Cd2+ analogues are 2.62 and 5.57 eV, respectively. Magnetic tests indicated that MHyCuCl3 has smeared antiferromagnetic ordering at 4.8 K.


Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry.

  • Willem Vereycken‎ et al.
  • ACS omega‎
  • 2021‎

The synthesis of ionic liquids (ILs) usually involves two steps: (i) quaternization of a precursor followed by (ii) a salt metathesis reaction to introduce the desired anion. A consequence of the second step is that most ILs still contain some amount of the initial anion, often chloride. In this work, wavelength dispersive X-ray fluorescence (WDXRF) spectrometry is presented for the direct measurement of chlorides in ILs. The WDXRF settings were optimized, and the system was calibrated for the detection of chloride in several analogues of the commercially available IL Aliquat 336, [A336][X] (with X = I-, Br-, NO3 -, or SCN-). The Cl Kα intensity showed excellent linearity for samples with a conversion >0.80 (approximately Cl < 8000 ppm). Synthetic quality control samples showed that the instrumental error and deviations induced by the calibration procedure were small with maximum values of 1 and 5%, respectively. Detection and quantification limits depended strongly on the matrix (i.e., anion system and dilution) but were relatively low: 42-191 and 127-578 ppm Cl, respectively. Compared with other analytical techniques used for this purpose, the strengths of WDXRF include its ease of use, rapid measurements, the near absence of sample preparation steps, and versatility in terms of anion systems and chloride concentration range.


Influence of in Vitro Assay Setup on the Apparent Cytotoxic Potency of Benzalkonium Chlorides.

  • Floris A Groothuis‎ et al.
  • Chemical research in toxicology‎
  • 2019‎

The nominal concentration is generally used to express concentration-effect relationships in in vitro toxicity assays. However, the nominal concentration does not necessarily represent the exposure concentration responsible for the observed effect. Surfactants accumulate at interphases and likely sorb to in vitro system components such as serum protein and well plate plastic. The extent of sorption and the consequences of this sorption on in vitro readouts is largely unknown for these chemicals. The aim of this study was to demonstrate the effect of sorption to in vitro components on the observed cytotoxic potency of benzalkonium chlorides (BAC) varying in alkyl chain length (6-18 carbon atoms, C6-18) in a basal cytotoxicity assay with the rainbow trout gill cell line (RTgill-W1). Cells were exposed for 48 h in 96-well plates to increasing concentration of BACs in exposure medium containing 0, 60 μM bovine serum albumin (BSA) or 10% fetal bovine serum (FBS). Before and after exposure, BAC concentrations in exposure medium were analytically determined. Based on freely dissolved concentrations at the end of the exposure, median effect concentrations (EC50) decreased with increasing alkyl chain length up to 14 carbons. For BAC with alkyl chains of 12 or more carbons, EC50's based on measured concentrations after exposure in supplement-free medium were up to 25-times lower than EC50's calculated using nominal concentrations. When BSA or FBS was added to the medium, a decrease in cytotoxic potency of up to 22 times was observed for BAC with alkyl chains of eight or more carbons. The results of this study emphasize the importance of expressing the in vitro readouts as a function of a dose metric that is least influenced by assay setup to compare assay sensitivities and chemical potencies.


Suitability of Highly Polymerised Polyaluminium Chlorides (PACls) in the Treatment of Mixture of Groundwater and Surface Water.

  • Izabela Krupińska‎
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The aim of this study was to evaluate the effectiveness of the coagulation process using highly polymerised polyaluminium chlorides in reducing the level of pollution of water in a mixture of groundwater and surface water. The coagulants used were prehydrolysed polyaluminium chlorides with the trade names PAXHP908 and PAXXL1911 that had alkalinity 85% and different iron contents (<0.01% and 0.7%). The Al species distribution in the PACls (PAXXL1911 ad PAXHP908) samples were analysed by the Ferron complexation timed spectrophotometry. The content of polymer forms of aluminium (Alb) in the tested coagulants was 40%. The worse results in the removal of organic matter (TOC, DOC, UV254), iron, colour and turbidity in the coagulation process were produced by the PAXXL1911, possessing higher content of iron (0.7%). The lower usefulness of the PAXXL1911 was probably caused by the interaction of organic ligands present in the treated water and Fe(III) ions introduced into the water with the coagulant. The effectiveness of the coagulation process with the tested coagulants was also evaluated by measuring the electrokinetic potential ζ, which determines the stability of the colloidal system.


Development of Novel Phase-Change Materials Derived from Methoxy Polyethylene Glycol and Aromatic Acyl Chlorides.

  • Alejandro Angel-López‎ et al.
  • Polymers‎
  • 2023‎

In this research, novel, organic, solid-liquid phase-change materials (PCMs) derived from methoxy polyethylene glycol (MPEG) and aromatic acyl chlorides (ACs) were prepared through a condensation reaction. The MPEGs were used as phase-change functional chains with different molecular weights (350, 550, 750, 2000, and 5000 g/mol). The aromatic ACs, terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), were employed as bulky linker cores. Solubility tests demonstrated that this family of PCMs is soluble in protic polar solvents such as H2O and MeOH, and insoluble in nonpolar solvents such as n-hexane. Fourier-ransform infrared spectroscopy (FT-IR UATR) and nuclear magnetic resonance (1H, 13C, DEPT 135°, COSY, HMQC, and HMBC NMR) were used to confirm the bonding of MPEG chains to ACs. The crystalline morphology of the synthesized materials was examined using polarized optical microscopy (POM), revealing the formation of spherulites with Maltese-cross-extinction patterns. Furthermore, it was confirmed that PCMs with higher molecular weights were crystalline at room temperature and exhibited an increased average spherulite size compared to their precursors. Thermal stability tests conducted through thermogravimetric analysis (TGA) indicated decomposition temperatures close to 400 °C for all PCMs. The phase-change properties were characterized by differential scanning calorimetry (DSC), revealing that the novel PCMs melted and crystallized between -23.7 and 60.2 °C and -39.9 and 45.9 °C, respectively. Moreover, the heat absorbed and released by the PCMs ranged from 57.9 to 198.8 J/g and 48.6 to 195.6 J/g, respectively. Additionally, the PCMs exhibited thermal stability after undergoing thermal cycles of melting-crystallization, indicating that energy absorption and release occurred at nearly constant temperatures. This study presents a new family of high-performance organic PCMs and demonstrates that the orientation of substituent groups in the phenylene ring influences supercooling, transition temperatures, and thermal energy storage capacity depending on the MPEG molecular weight.


Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides.

  • Jan Otevrel‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenyl)amino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenyl)amino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD₅₀ > 20 μmol/L) against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC₅₀ value of the most active compound 7-chloro-4-[(3-trifluoromethylphenyl)amino]quinolinium chloride was 27 μmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.


Diaryl and heteroaryl sulfides: synthesis via sulfenyl chlorides and evaluation as selective anti-breast-cancer agents.

  • Ivelina M Yonova‎ et al.
  • The Journal of organic chemistry‎
  • 2014‎

A mild protocol for the synthesis of diaryl and heteroaryl sulfides is described. In a one-pot procedure, thiols are converted to sulfenyl chlorides and reacted with arylzinc reagents. This method tolerates functional groups including aryl fluorides and chlorides, ketones, as well as N-heterocycles including pyrimidines, imidazoles, tetrazoles, and oxadiazoles. Two compounds synthesized by this method exhibited selective activity against the MCF-7 breast cancer cell line in the micromolar range.


Ruthenium(η⁶,η¹-arene-CH₂-NHC) Catalysts for Direct Arylation of 2-Phenylpyridine with (Hetero)Aryl Chlorides in Water.

  • Nazan Kaloğlu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

A series of new benzimidazolium halides were synthesized in good yields as unsymmetrical N-heterocyclic carbene (NHC) precursors containing the N-CH₂-arene group. The benzimidazolium halides were readily converted into ruthenium(II)-NHC complexes with the general formula [RuCl₂(η⁶,η¹-arene-CH₂-NHC)]. The structures of all new compounds were characterized by ¹H NMR (Nuclear Magnetic Resonance), 13C NMR, FT-IR (Fourier Transform Infrared) spectroscopy and elemental analysis techniques. The single crystal structure of one benzimidazole ruthenium complex, 2b, was determined. The complex is best thought of as containing an octahedrally coordinated Ru center with the arene residue occupying three sites, the remaining sites being occupied by a (carbene)C-Ru bond and two Ru-Cl bonds. The catalytic activity of [RuCl₂(η⁶,η¹-arene-CH₂-NHC)] complexes was evaluated in the direct (hetero)arylation of 2-phenylpyridine with (hetero)aryl chlorides in water as the nontoxic reaction medium. These results show that catalysts 2a and 2b were the best for monoarylation with simple phenyl and tolyl chlorides. For functional aryl chlorides, 2d, 2e, and 2c appeared to be the most efficient.


C-N Coupling of DNA-Conjugated (Hetero)aryl Bromides and Chlorides for DNA-Encoded Chemical Library Synthesis.

  • Ying-Chu Chen‎ et al.
  • Bioconjugate chemistry‎
  • 2020‎

DNA-encoded chemical library (DECL) screens are a rapid and economical tool to identify chemical starting points for drug discovery. As a robust transformation for drug discovery, palladium-catalyzed C-N coupling is a valuable synthetic method for the construction of DECL chemical matter; however, currently disclosed methods have only been demonstrated on DNA-attached (hetero)aromatic iodide and bromide electrophiles. We developed conditions utilizing an N-heterocyclic carbene-palladium catalyst that extends this reaction to the coupling of DNA-conjugated (hetero)aromatic chlorides with (hetero)aromatic and select aliphatic amine nucleophiles. In addition, we evaluated steric and electronic effects within this catalyst series, carried out a large substrate scope study on two representative (hetero)aryl bromides, and applied this newly developed method within the construction of a 63 million-membered DECL.


Chemico-Physical Properties of Some 1,1'-Bis-alkyl-2,2'-hexane-1,6-diyl-bispyridinium Chlorides Hydrogenated and Partially Fluorinated for Gene Delivery.

  • Michele Massa‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The development of very efficient and safe non-viral vectors, constituted mainly by cationic lipids bearing multiple charges, is a landmark for in vivo gene-based medicine. To understand the effect of the hydrophobic chain's length, we here report the synthesis, and the chemico-physical and biological characterization, of a new term of the homologous series of hydrogenated gemini bispyridinium surfactants, the 1,1'-bis-dodecyl-2,2'-hexane-1,6-diyl-bispyridinium chloride (GP12_6). Moreover, we have collected and compared the thermodynamic micellization parameters (cmc, changes in enthalpy, free energy, and entropy of micellization) obtained by isothermal titration calorimetry (ITC) experiments for hydrogenated surfactants GP12_6 and GP16_6, and for the partially fluorinated ones, FGPn (where n is the spacer length). The data obtained for GP12_6 by EMSA, MTT, transient transfection assays, and AFM imaging show that in this class of compounds, the gene delivery ability strictly depends on the spacer length but barely on the hydrophobic tail length. CD spectra have been shown to be a useful tool to verify the formation of lipoplexes due to the presence of a "tail" in the 288-320 nm region attributed to a chiroptical feature named ψ-phase. Ellipsometric measurements suggest that FGP6 and FGP8 (showing a very interesting gene delivery activity, when formulated with DOPE) act in a very similar way, and dissimilar from FGP4, exactly as in the case of transfection, and confirm the hypothesis suggested by previously obtained thermodynamic data about the requirement of a proper length of the spacer to allow the molecule to form a sort of molecular tong able to intercalate DNA.


Spontaneous conversion of O-tosylates of 2-(piperazin-1-yl)ethanols into chlorides during classical tosylation procedure.

  • Vanya B Kurteva‎ et al.
  • Royal Society open science‎
  • 2019‎

A direct conversion of piperazinyl ethanols into chlorides via a classical O-tosylation protocol is observed. The acceleration of the transformation by the piperazine unit is demonstrated. It is found that the reaction goes via the corresponding O-tosylate, which converts spontaneously into chloride with different rate depending on the substrate structure. In the case of pirlindole derivative, partially aromatized chloride formation was observed upon prolongation and/or increased excess of tosyl chloride.


Modular synthesis and transition metal-free alkynylation/alkenylation of Castagnoli-Cushman-derived N,O- and N,S-heterocyclic vinyl chlorides.

  • Timothy K Beng‎ et al.
  • RSC advances‎
  • 2020‎

A modular and functional group-tolerant protocol for the transition metal-free coupling of novel N,O- and N,S-heterocyclic vinyl chlorides with terminal acetylenes and styrenes has been developed, leading to the epimerization-free synthesis of fully carbofunctionalized dihydro-1,4-oxazines/thiazines. Bicyclic morpholines have also been prepared through the interrogation of newly synthesized cross-conjugated dienes in Diels-Alder reactions. The use of environmentally benign reaction media endows the current strategy with a practical advantage.


Biological removal of benzalkonium chlorides from wastewater by immobilized cells of Pseudomonas sp. BIOMIG1 in an up-flow packed bed reactor.

  • Fahri Koray Sakarya‎ et al.
  • Journal of hazardous materials‎
  • 2021‎

Quaternary ammonium compounds (QACs) are active ingredients of many disinfectants used against SARS-CoV-2 to control the transmission of the virus through human-contact surfaces. As a result, QAC consumption has increased more than twice during the pandemic. Consequently, the concentration of QACs in wastewater and receiving environments may increase. Due to their antimicrobial activity, high levels of QACs in wastewater may cause malfunctioning of biological treatment systems resulting in inadequate treatment of wastewater. In this study, a biocatalyst was produced by entrapping Pseudomonas sp. BIOMIG1 capable of degrading QACs in calcium alginate. Bioactive 3-mm alginate beads degraded benzalkonium chlorides (BACs), a group of QACs, with a rate of 0.47 µM-BACs/h in shake flasks. A bench-scale continuous up-flow reactor packed with BIOMIG1-beads was operated over one and a half months with either synthetic wastewater or secondary effluent containing 2-20 µM BACs at an empty bed contact time (EBCT) ranging between 0.6 and 4.7 h. Almost complete BAC removal was achieved from synthetic and real wastewater at and above 1.2 h EBCT without aeration and effluent recirculation. The microbial community in beads dominantly composed of BIOMIG1 with trace number of Achromobacter spp. after the operation of the reactor with the real wastewater, suggesting that BIOMIG1 over-competed native wastewater bacteria during the operation. This reactor system offers a low cost and robust treatment of QACs in wastewater. It can be integrated to conventional treatment systems for efficient removal of QACs from the wastewater, especially during the pandemic period.


Nucleophilic Substitution at Tetracoordinate Sulfur. Kinetics and Mechanism of the Chloride-Chloride Exchange Reaction in Arenesulfonyl Chlorides: Counterintuitive Acceleration of Substitution at Sulfonyl Sulfur by ortho-Alkyl Groups and Its Origin.

  • Marian Mikołajczyk‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The chloride-chloride exchange reaction in arenesulfonyl chlorides was investigated experimentally and theoretically by density functional theory (DFT) calculations. The second order rate constants and activation parameters of this identity reaction were determined for 22 variously substituted arenesulfonyl chlorides using radio-labeled Et4N36Cl. The chloride exchange rates of 11 sulfonyl chlorides bearing para-and meta-substituents (σ constants from -0.66 to +0.43) in the aromatic ring followed the Hammett equation with a ρ-value of +2.02. The mono- and di-ortho-alkyl substituted sulfonyl chlorides exhibit an enhanced reactivity although both inductive and steric effects lower the reaction rate. The DFT calculations of their structures together with X-ray data showed that an increased reactivity is mainly due to a peculiar, rigid, strongly compressed and sterically congested structure. The DFT studies of the title reaction revealed that it proceeds via a single transition state according to the SN2 mechanism. The analogous fluoride exchange reaction occurs according to the addition-elimination mechanism (A-E) and formation of a difluorosulfurandioxide intermediate. The reliability of the calculations performed was supported by the fact that the calculated relative rate constants and activation parameters correlate well with the experimental kinetic data.


Evaluation of Methodologies for Assessing Self-Healing Performance of Concrete with Mineral Expansive Agents: An Interlaboratory Study.

  • Chrysoula Litina‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

Self-healing concrete has the potential to optimise traditional design approaches; however, commercial uptake requires the ability to harmonize against standardized frameworks. Within EU SARCOS COST Action, different interlaboratory tests were executed on different self-healing techniques. This paper reports on the evaluation of the effectiveness of proposed experimental methodologies suited for self-healing concrete with expansive mineral additions. Concrete prisms and discs with MgO-based healing agents were produced and precracked. Water absorption and water flow tests were executed over a healing period spanning 6 months to assess the sealing efficiency, and the crack width reduction with time was monitored. High variability was reported for both reference (REF) and healing-addition (ADD) series affecting the reproducibility of cracking. However, within each lab, the crack width creation was repeatable. ADD reported larger crack widths. The latter influenced the observed healing making direct comparisons across labs prone to errors. Water absorption tests highlighted were susceptible to application errors. Concurrently, the potential of water flow tests as a facile method for assessment of healing performance was shown across all labs. Overall, the importance of repeatability and reproducibility of testing methods is highlighted in providing a sound basis for incorporation of self-healing concepts in practical applications.


New transition metal complexes with a pendent indole ring: insights into the antifungal activity and mode of action.

  • Ovas Ahmad Dar‎ et al.
  • RSC advances‎
  • 2019‎

Development of new chemotherapeutic agents to treat multidrug-resistant fungal infections to augment the current treatment options is a must. In this direction, a series of mixed ligand complexes was synthesized from a Schiff base (L) obtained by the condensation of 2-hydroxynapthaldehyde and tryptamine, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. Based on spectral characterization and physical measurements an octahedral geometry was assigned to [Co(phen)LClH2O] (C2), [Ni(phen)LClH2O](C3), and [Zn(phen)LClH2O](C4) complexes while a distorted octahedral geometry was assigned to the [Cu(phen)LClH2O](C1) complex. All the synthesized compounds were tested for antifungal activity against 11 Candida albicans isolates, including fluconazole (FLC) resistant isolates, by determining minimum inhibitory concentrations and studying growth curves. MIC results suggest that all the newly synthesized compounds have potent antifungal activity at varying levels. The rapid action of these compounds on fungal cells suggested a membrane-located target for their action.


Synthesis and Use of Valsartan Metal Complexes as Media for Carbon Dioxide Storage.

  • Alaa Mohammed‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2020‎

To address global warming through carbon dioxide storage, three valsartan metal complexes were synthesized in excellent yields (87-92%) through a reaction of the appropriate metal chloride (tin chloride, nickel chloride hexahydrate, or magnesium chloride hexahydrate) and excess valsartan (two mole equivalents) in boiling methanol for 3 h. The structures of the metal complexes were established based on the data obtained from ultraviolet-visible, Fourier transform infrared, and proton nuclear magnetic resonance spectra, as well as from elemental analysis, energy-dispersive X-ray spectra, and magnetic susceptibility. The agglomeration and shape of the particles were determined using field emission scanning electron microscopy analysis. The surface area (16.63-22.75 m2/g) of the metal complexes was measured using the Brunauer-Emmett-Teller method, whereas the Barrett-Joyner-Halenda method was used to determine the particle pore size (0.011-0.108 cm3/g), total average pore volume (6.50-12.46 nm), and pore diameter (6.50-12.47 nm), for the metal complexes. The carbon dioxide uptake of the synthesized complexes, at 323 K and 4 MPa (40 bar), ranged from 24.11 to 34.51 cm2/g, and the nickel complex was found to be the most effective sorbent for carbon dioxide storage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: