Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Biologically active sulfur-containing polyamides as promising anticancer materials.

  • Gadeer R Ashour‎ et al.
  • Designed monomers and polymers‎
  • 2023‎

Thiazol-based molecules have practically infinite biological implementation. Today, there are many medical applications for compounds containing the thiazole moiety owing to their presence in most clinically applied anticancer drugs, such as dasatinib, dabrafenib, ixabepilone, patellamide A and epothilone. In this study, the polycondensation, of a new group of thiazole-containing polyamides with the formulas PA1-4 was carried out by the interaction of 2-aminothiazole diphenyl sulfide and variable diacid chlorides in dimethyl formamide in the presence of potassium carbonate anhydrous as a catalyst. Fourier transform-infrared spectroscopy (FTIR) was initially used to figure out the PA1-4 structures, which were further characterized using solubility, gel permeation chromatography (GPC), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). The solubility results revealed that the presence of heteroaromatic thiazole ring units and sulfur content in the polyamides main chain, made the solubility easier as it increases the chain packing distance. From the values of average molecular weight, it was clear that all synthesized polyamides have almost the same chain length which ranged from 37,561.80 to 39,827.66. Moreover, the thermogravimetric analysis (TGA) confirm that PA1-4 were thermally stable even at high temperatures especially the polyamides which were synthesized from aromatic diacid chlorides. Furthermore, the newly synthesized polyamides were investigated for their antimicrobial properties against different species of Gram-positive and Gram-negative bacteria and also against different fungi. The results revealed that compound PA2 showed the highest antibacterial activity. Also, their inhibitory activity against breast carcinoma cells (MCF-7 cell line) and colon carcinoma cells (HCT cell line) was evaluated. It was clear that there was an enhancement in the anticancer activity for the synthesized polyamides owing to the presence of the thiazole moiety as well as sulfur linkage. According to the results of the 50% inhibitory concentration (IC50), the synthesized polymers were found to be more active against the MCF-7 cell line than the HCT cell line.


Highly selective heteroaromatic sulfur containing polyamides for Hg+2 environmental remediation.

  • Soha M Albukhari‎ et al.
  • Designed monomers and polymers‎
  • 2020‎

Environmental remediation concerns about pollution and contamination removal from environmental media, such as soil, air, or surface water. Enormous efforts have been applied in metal removal from surface water. In this study, four novel heteroaromatic sulfur-containing polyamides 6a-d carry both types of aliphatic and aromatic species in their polymer backbones as selective adsorbents for Hg+2 metal ion from aqueous solution have been synthesized in considerable amounts. The polycondensation method at low temperature is used as a simple and low coast polymerization technique. This occurred by the interaction of the thiophene-based monomer 5 with different diacid chlorides of both types. Beforehand the polymerization, the structures of monomer 5 were confirmed by spectral and elemental analyses. Also, the structures of the new polymers were investigated by both spectral and elemental analysis; besides their solubility, GPC data, XRD diffraction patterns, thermal analysis, and FE-SEM micrographs. The synthesized polymers were freely soluble in polar protic solvents due to the presence of heteroaromatic sulfur functional groups. Furthermore, the analytical competition of the new polymers has been tested using inductively coupled plasma-optical emission spectrometry (ICP-OES) for its selective extraction across different metal ions. Polymer 6c was the most selective toward Hg+2 and considered as a highly selective adsorbent for Hg+2 environmental remediation among all derivatives and its adsorption detection and efficiency were also investigated. Polymer 6c showed the most effective adsorption quantity on its surface at pH = 1. Moreover, the calculated adsorption isotherm showed a typical isotherm to the Langmuir adsorption type. This showed that the adsorption capacity of polymer 6c for Hg+2 was 47.95 mg g-1. These novel polymers are serving as simple and inexpensive heavy metal ions adsorbent materials from drinking water and wastewater.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: