Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 216 papers

Effects of chloride ions in acid-catalyzed biomass dehydration reactions in polar aprotic solvents.

  • Max A Mellmer‎ et al.
  • Nature communications‎
  • 2019‎

The use of polar aprotic solvents in acid-catalyzed biomass conversion reactions can lead to improved reaction rates and selectivities. We show that further increases in catalyst performance in polar aprotic solvents can be achieved through the addition of inorganic salts, specifically chlorides. Reaction kinetics studies of the Brønsted acid-catalyzed dehydration of fructose to hydroxymethylfurfural (HMF) show that the use of catalytic concentrations of chloride salts leads to a 10-fold increase in reactivity. Furthermore, increased HMF yields can be achieved using polar aprotic solvents mixed with chlorides. Ab initio molecular dynamics simulations (AIMD) show that highly localized negative charge on Cl- allows the chloride anion to more readily approach and stabilize the oxocarbenium ion that forms and the deprotonation transition state. High concentrations of polar aprotic solvents form local hydrophilic environments near the reactive hydroxyl group which stabilize both the proton and chloride anions and promote the dehydration of fructose.


Utility of 3-Acetyl-6-bromo-2H-chromen-2-one for the Synthesis of New Heterocycles as Potential Antiproliferative Agents.

  • Sobhi M Gomha‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

Coumarin derivatives containing pyrazolo[1,5-a]pyrimidine, tetrazolo[1,5-a]pyrimidine, imidazo[1,2-a]pyrimidine, pyrazolo[3,4-d]pyrimidine, 1,3,4-thiadiazoles and thiazoles were synthesized from 6-bromo-3-(3-(dimethylamino)acryloyl)-2H-chromen-2-one, methyl 2-(1-(6-bromo-2-oxo-2H-chromen-3-yl)ethylidene)hydrazine carbodithioate, 2-(1-(6-bromo-2-oxo-2H-chromen-3-yl)ethylidene) hydrazine carbothioamide and each of heterocyclic amine, hydrazonoyl chlorides and hydroximoyl chlorides. The structures of the newly synthesized compounds were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic routes whenever possible. Moreover, selected newly synthesized products were evaluated for their antitumor activity against a liver carcinoma cancer cell line (HEPG2-1). The results revealed that pyrazolo[1,5-a]pyrimidine 7c, thiazole 23g and 1,3,4-thiadiazole 18a (IC50 = 2.70 ± 0.28, 3.50 ± 0.23 and 4.90 ± 0.69 µM, respectively) have promising antitumor activity against liver carcinoma (HEPG2-1) while most of the tested compounds showed moderate activity.


Electrospray ionization mass spectrometric analysis of highly reactive glycosyl halides.

  • Attila Bokros‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]⁺, [2M+Li]⁺ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.


Synthesis, topoisomerase-targeting activity and growth inhibition of lycobetaine analogs.

  • Simone A Baechler‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

The plant alkaloid lycobetaine has potent topoisomerase-targeting properties and shows anticancer activity. Based on these findings, several lycobetaine analogs were synthesized mainly differing in their substituents at 2, 8 and 9 position and their biological activities were evaluated. The topoisomerase-targeting properties and cytotoxicity of these structural analogs were assessed in the human gastric carcinoma cell line GXF251L. Performing a plasmid relaxation assay, an increased inhibition of topoisomerase I was found with N-methylphenanthridinium chlorides bearing a 8,9-methylenedioxy moiety or a methoxy group in 2-position. Furthermore, quaternized phenanthridinium derivatives bearing either a 2-methoxy or a 8,9-methylenedioxy moiety in conjunction with a 2-hydroxy or 2-methoxy group display potent topoisomerase II inhibition as shown by decatenation of kinetoplast DNA. In general, the N-methylphenanthridinium chlorides possess more potency in inhibiting topoisomerase I than topoisomerase II. All quaternized derivatives also exhibited potent inhibition of tumor cell growth in the low micromolar concentration range. Hence, N-methylphenanthridinium compounds were found to represent a promising class of compounds, potently inhibiting both, topoisomerases I and II, and may be further developed into clinically useful topoisomerase inhibitors.


Non-natural 2H-azirine-2-carboxylic acids: an expedient synthesis and antimicrobial activity.

  • Pavel A Sakharov‎ et al.
  • RSC advances‎
  • 2019‎

Non-natural 2H-azirine-2-carboxylic acids were obtained in high yields by FeCl2-catalyzed isomerization of 5-chloroisoxazoles to azirine-2-carbonyl chlorides followed by their hydrolysis. The 3-aryl- and 3-heteroaryl-substituted acids are stable during prolonged storage, exhibit antibacterial activity against ESKAPE pathogens and show a low level of cytotoxicity.


Intramolecular Ring-Expansion Reaction (RER) and Intermolecular Coordination of In Situ Generated Cyclic (Amino)(aryl)carbenes (cAArCs).

  • Jan Lorkowski‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2019‎

Cyclic (amino)(aryl)carbenes (cAArCs) based on the isoindoline core were successfully generated in situ by α-elimination of 3-alkoxyisoindolines at high temperatures or by deprotonation of isoindol-2-ium chlorides with sodium or copper(I) acetates at low temperatures. 3-Alkoxy-isoindolines 2 a,b-OR (R=Me, Et, iPr) have been prepared in high yields by the addition of a solution of 2-aryl-1,1-diphenylisoindol-2-ium triflate (1 a,b-OTf; a: aryl=Dipp=2,6-diisopropylphenyl; b: Mesityl-, Mes=2,4,6-trimethylphenyl) to the corresponding alcohol (ROH) with NEt3 at room temperature. Furthermore, the reaction of 2 a,b-OMe in diethyl ether with a tenfold excess of hydrochloric acid led to the isolation of the isoindol-2-ium chlorides 1 a,b-Cl in high yields. The thermally generated cAArC reacts with sulfur to form the thioamide 3 a. Without any additional trapping reagent, in situ generation of 1,1-diphenylisoidolin-3-ylidenes does not lead to the isolation of these compounds, but to the reaction products of the insertion of the carbene carbon atom into an ortho C-H bond of a phenyl substituent, followed by ring-expansion reaction; namely, anthracene derivatives 9-N(H)aryl-10-Ph-C14 H8 4 a,b (a: Dipp; b: Mes). These compounds are conveniently synthesized by deprotonation of the isoindol-2-ium chlorides with sodium acetate in high yields. Deprotonation of 1 a-Cl with copper(I) acetate at low temperatures afforded a mixture of 4 a and the corresponding cAArC copper(I) chloride 5 a, and allowed the isolation and structural characterization of the first example of a cAArC copper complex of general formula [(cAArC)CuCl].


Synthesis and Antimicrobial Activity Evaluation of Homodrimane Sesquiterpenoids with a Benzimidazole Unit.

  • Lidia Lungu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Herein we report a feasible study concerning the synthesis and the in vitro antimicrobial activity of some new homodrimane sesquiterpenoids with a benzimidazole unit. Based on some homodrimane carboxylic acids, on their acyl chlorides and intermediate monoamides, a series of seven N-homodrimenoyl-2-amino-1,3-benzimidazoles and 2-homodrimenyl-1,3-benzimidazoles was synthesized. The syntheses involved the decarboxylative cyclization and condensation of the said acids or acyl chlorides with o-phenylendiamine and 2-aminobenzimidazole, as well as the p-TsOH-mediated cyclodehydration of the said monoacylamides. The structures of the synthesized compounds have been fully confirmed, including by the X-ray diffraction. Their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). Compounds 7 and 20 showed higher antifungal (MIC = 0.064 and 0.05 μg/mL) and antibacterial (MIC = 0.05 and 0.032 μg/mL) activities compared to those of the standards: caspofungin (MIC = 0.32 μg/mL) and kanamycin (MIC = 2.0 μg/mL), and compounds 4, 10, 14, and 19 had moderate activities.


Secoisolariciresinol diglucoside protects against cadmium-induced oxidative stress-mediated renal toxicity in rats.

  • Tareq Aqeel‎ et al.
  • Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS)‎
  • 2020‎

Cadmium is a well known environmental pollutant and strong toxic heavy metal, that causes oxidative damage to various organs of the body, including the kidney. Cadmium (II) chloride (CdCl2) is a water-soluble crystalline form, which exhibits a higher affinity with chlorides at the target site. The current study examined the protective effects of Secoisolariciresinol diglucoside (SDG), a principal lignan extracted from flaxseeds against CdCl2-induced renal toxicity in rats.


Assessment of Groundwater Quality Using Water Quality Index from Selected Springs in Manga Subcounty, Nyamira County, Kenya.

  • Alice Makonjo Wekesa‎ et al.
  • TheScientificWorldJournal‎
  • 2022‎

We present the results of groundwater quality assessment that was done during the rainy season in November 2018 in the Manga region of Nyamira County, Kenya. Water samples were collected from three springs, Kiangoso, Kerongo, and Tetema, for the assessment. Water quality index was calculated based on pH, turbidity, nitrate, phosphate, calcium, magnesium, chloride, sulphates, fluoride, iron, total phosphorous, total hardness, total alkalinity, total dissolved solids, and total coliform. These fifteen parameters were analyzed and characterized according to standard methods and with reference to the World Health Organization and Kenya Bureau of Standards for physiochemical and bacteriological parameters which were then used in the calculation of water quality index. The water quality index was 21.32 for Kiangoso, 29.66 for Kerongo, and 25.64 for Tetema. The water quality index was found to be of excellent quality status at Kiangoso, while of good quality status at Kerongo and Tetema. The water quality index of Manga groundwater represented by the three springs therefore is less than 30 and can be used for drinking, irrigation, and industrial purpose. The present results are crucial for future management of groundwater in the Manga region.


Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts.

  • Yuya Furushiro‎ et al.
  • Journal of applied glycoscience‎
  • 2020‎

Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose.


Syntheses and Structure-Activity Relationships in Growth Inhibition Activity against Human Cancer Cell Lines of 12 Substituted Berberine Derivatives.

  • Bo Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

In this study, quaternary berberine chloride is used as a lead compound to design and synthesize a series of berberine-12-amine derivatives to evaluate the growth inhibition activity against human cancer cell lines. Forty-two compounds of several series were obtained. The quaternary berberine-12-N,N-di-n-alkylamine chlorides showed the targeted activities with the IC50 values of most active compounds being dozens of times those of the positive control. A significant structure-activity relationship (SAR) was observed. The activities of quaternary berberine-12-N,N-di-n-alkylamine chlorides are significantly stronger than those of the reduced counterparts. In the range of about 6-8 carbon atoms, the activities increase with the elongation of n-alkyl carbon chain of 12-N,N-di-n-alkylamino, and when the carbon atom numbers are more than 6-8, the activities decrease with the elongation of n-alkyl carbon chain. The activities of the tertiary amine structure are significantly higher than that of the secondary amine structure.


Synthesis and Cytotoxic Activity of Chiral Sulfonamides Based on the 2-Azabicycloalkane Skeleton.

  • Mahzeiar Samadaei‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

A series of chiral sulfonamides containing the 2-azabicycloalkane scaffold were prepared from aza-Diels-Alder cycloadducts through their conversion to amines based on 2-azanorbornane or the bridged azepane skeleton, followed by the reaction with sulfonyl chlorides. The cytotoxic activity of the obtained bicyclic derivatives was evaluated using human hepatocellular carcinoma (HCC), medulloblastoma (MB), and glioblastoma (GBM) cell lines. Chosen compounds were shown to notably reduce cell viability as compared to nonmalignant cells.


Palladium-Catalyzed Hydroxycarbonylation of (Hetero)aryl Halides for DNA-Encoded Chemical Library Synthesis.

  • Jian-Yuan Li‎ et al.
  • Bioconjugate chemistry‎
  • 2019‎

A strategy for DNA-compatible, palladium-catalyzed hydroxycarbonylation of (hetero)aryl halides on DNA-chemical conjugates has been developed. This method generally provided the corresponding carboxylic acids in moderate to very good conversions for (hetero)aryl iodides and bromides, and in poor to moderate conversions for (hetero)aryl chlorides. These conditions were further validated by application within a DNA-encoded chemical library synthesis and subsequent discovery of enriched features from the library in selection experiments against two protein targets.


Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements.

  • Christian Schumacher‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

This study presents the development of a mechanochemical protocol for a charge-accelerated aza-Claisen rearrangement. The protocol waives the use of commonly applied transition metals, ligands, or pyrophoric Lewis acids, e.g., AlMe3. Based on (heterocyclic) tertiary allylamines and acyl chlorides, the desired tertiary amides were prepared in yields ranging from 17% to 84%. Moreover, the same protocol was applied for a Belluš-Claisen-type rearrangement resulting in the synthesis of a 9-membered lactam without further optimization.


Risk factors for fluoroquinolone resistance in ocular cultures.

  • Junsung Lee‎ et al.
  • Korean journal of ophthalmology : KJO‎
  • 2015‎

To identify the risk factors associated with fluoroquinolone resistance in patients undergoing cataract surgery.


Copper and Cobalt Ions Released from Metal Oxide Nanoparticles Trigger Skin Sensitization.

  • Sung-Hyun Kim‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Human skins are exposed to nanomaterials in everyday life from various sources such as nanomaterial-containing cosmetics, air pollutions, and industrial nanomaterials. Nanomaterials comprising metal haptens raises concerns about the skin sensitization to nanomaterials. In this study, we evaluated the skin sensitization of nanomaterials comparing metal haptens in vivo and in vitro. We selected five metal oxide NPs, containing copper oxide, cobalt monoxide, cobalt oxide, nickel oxide, or titanium oxide, and two types of metal chlorides (CoCl2 and CuCl2), to compare the skin sensitization abilities between NPs and the constituent metals. The materials were applied to KeratinoSensTM cells for imitated skin-environment setting, and luciferase induction and cytotoxicity were evaluated at 48 h post-incubation. In addition, the response of metal oxide NPs was confirmed in lymph node of BALB/C mice via an in vivo method. The results showed that CuO and CoO NPs induce a similar pattern of positive luciferase induction and cytotoxicity compared to the respective metal chlorides; Co3O4, NiO, and TiO2 induced no such response. Collectively, the results implied fast-dissolving metal oxide (CuO and CoO) NPs release their metal ion, inducing skin sensitization. However, further investigations are required to elucidate the mechanism underlying NP-induced skin sensitization. Based on ion chelation data, metal ion release was confirmed as the major "factor" for skin sensitization.


Mono- and di-acylated imidazolidine-2-thione derivatives: synthesis, cytotoxicity evaluation and computational studies.

  • Anna Scarsi‎ et al.
  • Molecular diversity‎
  • 2023‎

Imidazolidine-2-thione substructure represents a pharmaceutically attractive scaffold, being included in different antimicrobial, anticancer and pesticide agents. To further evaluate the pharmaceutical potential of this chemical moiety, imidazolidine-2-thione was reacted with atypical Vilsmeier adducts, obtained by the condensation between dimethylacetamide and various acyl chlorides endowed with different electronic and steric properties. The formation of mono-acylated or di-acylated thiourea derivatives emerged to be affected by the nature of the considered acyl chloride reagent. Computational semi-empirical simulations were carried out to rationalize the relevant factor influencing the outcome of the reaction. As acylthioureas are pharmacologically relevant compounds, the chemical versatility of mono-acylated derivatives were evaluated by reacting benzoyl imidazolidin-2-thione with acyl chlorides. A small library of asymmetric di-acylthioureas was prepared and the obtained derivatives did not show any cytotoxicity on SKOV-3 and MCF-7 cancer cell lines. Additionally, in silico studies predicted good pharmacokinetics properties and promising drug-like characteristics for mono- and di-acylated thioureas. These considerations further support the value of the prepared compounds as interesting non-cytotoxic chemical scaffold useful in the medicinal chemistry field.


Synthesis and Characterization of 2-Decenoic Acid Modified Chitosan for Infection Prevention and Tissue Engineering.

  • Carlos Montez Wells‎ et al.
  • Marine drugs‎
  • 2021‎

Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P.aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.


Bioprocess Optimization of Nutritional Parameters for Enhanced Anti-leukemic L-Asparaginase Production by Aspergillus candidus UCCM 00117: A Sequential Statistical Approach.

  • Maurice Ekpenyong‎ et al.
  • International journal of peptide research and therapeutics‎
  • 2021‎

Sequential optimization of bioprocess nutritional conditions for production of glutaminase-near-free L-asparaginase by Aspergillus candidus UCCM 00117 was conducted under shake flask laboratory conditions. Catalytic and anti-cancer activities of the poly-peptide were evaluated using standard in vitro biochemical methods. Medium nutrients were selected by one-factor-at-a-time (OFAT) approach while Plackett-Burman design (PBD) screened potential factors for optimization. Path of steepest ascent (PSA) and response surface methodology (RSM) of a Min-Run-Res V fractional factorial of a central composite rotatable design (CCRD) were employed to optimize factor levels towards improved enzyme activity. A multi-objective approach using desirability function generated through predictor importance and weighted coefficient methodology was adopted for optimization. The approach set optimum bioprocess conditions as 49.55 g/L molasses, 64.98% corn steep liquor, 44.23 g/L asparagine, 1.73 g/L potassium, 0.055 g/L manganese and 0.043 g/L chromium (III) ions, at a composite desirability of 0.943 and an L-asparaginase activity of 5216.95U. The Sephadex-200 partially-purified polypeptide had a specific activity of 476.84 U/mg; 0.087U glutaminase activity, 36.46% yield and 20-fold protein purification. Anti-cancer activity potentials of the catalytic poly-peptide were dose-dependent with IC50 (µg/mL): 4.063 (HL-60), 13.75 (HCT-116), 15.83 (HeLa), 11.68 (MCF-7), 7.61 (HepG-2). The therapeutic enzyme exhibited 15-fold more cytotoxicity to myeloid leukemia cell line than to normal (HEK 238 T) cell. Optimum temperature and pH for activity were within physiological range. However, significant interactions between exposure time and levels of each of temperature and pH made interpretations of residual enzyme activities difficult. The manganese-dependent L-asparaginase from Aspergillu s candidus UCCM 00117 is recommended for further anticancer drug investigations.


Non-C2-Symmetric Bis-Benzimidazolium Salt Applied in the Synthesis of Sterically Hindered Biaryls.

  • Yen-Hsin Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A novel non-C2-symmetric bis-benzimidazolium salt derived from (±)-valinol has been prepared by a simple and straightforward process in good yield. The structure of bis-benzimidazolium salt provided a bulky steric group on the ethylene bridge; which facilitates the catalytic efficacy in the C(sp2)-C(sp2) formation. Its catalytic activity in Suzuki-Miyaura cross-coupling reaction of unactivated aryl chlorides has been found to have high efficacy in 1 mol% Pd loading. This protocol demonstrated the potential on the synthesis of sterically hindered biaryls.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: