2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Effect of targeted ovarian cancer immunotherapy using ovarian cancer stem cell vaccine.

  • Di Wu‎ et al.
  • Journal of ovarian research‎
  • 2015‎

Accumulating evidence has shown that different immunotherapies for ovarian cancer might overcome barriers to resistance to standard chemotherapy. The vaccine immunotherapy may be a useful one addition to conditional chemotherapy regimens. The present study investigated the use of vaccine of ovarian cancer stem cells (CSCs) to inhibit ovarian cancer growth.


Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy.

  • Yihang Qi‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Although various immunotherapies have exerted promising effects on cancer treatment, many patients with cancer continue to exhibit poor responses. Because of its negative regulatory effects on T cells and its biological functions related to immune and inflammatory responses, there has been considerable emphasis on a protein-coding gene named lymphocyte-activation gene 3 (LAG3). Recently, evidence demonstrated marked synergy in its targeted therapy with programmed death-1 and programmed death-1 ligand-1 (PD-1/PD-L1) blockade, and a variety of LAG3 targeted agents are in clinical trials, indicating the important role of LAG3 in immunotherapy. This mini-review discusses preclinical and clinical studies investigating PD-1 pathway blockade in combination with LAG3 inhibition as a potentially more effective immunotherapy strategy for further development in the clinic. This strategy might provide a new approach for the design of more effective and precise cancer immune checkpoint therapies.


Enhanced Therapeutic Efficacy of Combining Losartan and Chemo-Immunotherapy for Triple Negative Breast Cancer.

  • Qing Zhao‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer, which is relatively resistant to anti-programmed cell death-1 (α-PD1) therapy, characterized as non-immunogenic, dense stroma and accumulation of M2 tumor-associated macrophages (TAMs). Despite progress in strategies to deplete extracellular matrix (ECM) and enhance tumor-cell immunogenicity, the combinatorial anti-cancer effects with α-PD1 need to be explored. Here, we applied doxorubicin hydrochloride liposome (Dox-L) as immunogenic cell death (ICD)-inducing nano-chemotherapy and used losartan as stroma-depleting agent to improve α-PD1 efficacy (Losartan + Dox-L + α-PD1). The results showed that losartan could cause ECM reduction, facilitating enhanced delivery of Dox-L and further dendritic cell (DC) maturation. Additionally, losartan could also alleviate hypoxia for TNBC, thus reprogramming pro-cancer M2 TAMs to anti-cancer M1 TAMs, successfully overcoming immune-suppressive microenvironment. These modifications led to a significant increase in T cells' infiltration and augmented anti-tumor immunity as exemplified by the notable reduction in tumor size and lung metastases. In summary, our findings support that combined treatment of losartan with Dox-L normalizes immunological-cold microenvironment, improves immuno-stimulation and optimizes the efficacy of TNBC immunotherapy. A novel combinational strategy with FDA-approved compounds proposed by the study may potentially be useful in TNBC clinical treatment.


Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy.

  • Ying Jing‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

To determine whether antibiotic treatment is a risk factor for immune-related adverse events (irAEs) across different patients with cancer receiving anti-PD-1/PD-L1 therapies.


Designing immunogenic nanotherapeutics for photothermal-triggered immunotherapy involving reprogramming immunosuppression and activating systemic antitumor responses.

  • Jing Wang‎ et al.
  • Biomaterials‎
  • 2020‎

Low tumor mutational burden and absence of T cells within the tumor sites are typical characteristics of "cold immune tumors" that paralyzes the immune system. The strategy of reversing "cold tumors" to "hot tumors" infiltrated high degree of T cells in order to activate anti-tumor immunity has attracted lots of attentions. Herein, immunogenic core-shell Au@Se NPs is fabricated by gold-selenium coordination bond to realize nanoparticles-mediated local photothermal-triggered immunotherapy. As expected, incorporation of gold nanostars (AuNSs) with improved photothermal stability and conversion efficiency promotes the disintegration and transformation of selenium nanoparticles (SeNPs), thus leading to enhanced cancer cells apoptosis by producing higher hyperthermia. Moreover, the results of in vivo experiments demonstrate that the synergy between SeNPs-mediated chemotherapy and AuNSs-induced photothermal therapy not only generated a localized antitumor-immune response with excellent cancer killing effect under the presence of tumor-associated antigens, but also effectively reprogrammed the tumor associated macrophages (TAMs) from M2 to M1 phenotype with tumoricidal activity to devour distant tumors. Without a doubt, this study not only provides a potent strategy to reverse the immunosuppressive tumor microenvironment, but also offers a new insight for potential clinical application in tumor immunotherapy.


Identification and Validation of Immune Molecular Subtypes in Pancreatic Ductal Adenocarcinoma: Implications for Prognosis and Immunotherapy.

  • Ruiyu Li‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) remains treatment refractory. Immunotherapy has achieved success in the treatment of multiple malignancies. However, the efficacy of immunotherapy in PDAC is limited by a lack of promising biomarkers. In this research, we aimed to identify robust immune molecular subtypes of PDAC to facilitate prognosis prediction and patient selection for immunotherapy.


Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer.

  • Lincheng Li‎ et al.
  • Frontiers in immunology‎
  • 2022‎

As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.


MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma.

  • Di Chen‎ et al.
  • Biomarker research‎
  • 2024‎

The tumor immune microenvironment can influence the prognosis and treatment response to immunotherapy. We aimed to develop a non-invasive radiomic signature in high-grade glioma (HGG) to predict the absolute density of tumor-associated macrophages (TAMs), the preponderant immune cells in the microenvironment of HGG. We also aimed to evaluate the association between the signature, and tumor immune phenotype as well as response to immunotherapy.


An immune-related prognostic gene ULBP2 is correlated with immunosuppressive tumor microenvironment and immunotherapy in breast cancer.

  • Rui Feng‎ et al.
  • Heliyon‎
  • 2024‎

Breast cancer (BC) is one of the major dangerous tumors threatening women's lives. We here aimed to sort out prognostic immune-related genes by univariate Cox regression analysis and build a model of immune-related genes for forecasting the prognosis of BC patients. We identified UL16 binding protein 2 (ULBP2) as a valuable gene for study in the model using related databases and algorithms analysis. We found the stromal and immune cells scores were higher in ULBP2 high expression group and ULBP2 was related to kinds of immune cells, most importantly had negative correlation with CD8+ T cell. Notably, ULBP2 was positively correlated with tumor mutational burden (TMB) and had relationship with many immune checkpoints. Correlation analysis revealed that ULBP2 expression was closely linked to the clinicopathological characters and negatively related to BC patient survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed the functional enrichment of differential genes related to ULBP2. Gene Set Enrichment Analysis (GSEA) indicated pathway enrichment in ULBP2 high and low expression groups. In short, this study comprehensively investigated the potential function of ULBP2 in BC, which might make ULBP2 to be an important therapeutic target for BC.


Feasibility of iNKT cell and PD-1+CD8+ T cell-based immunotherapy in patients with lung adenocarcinoma: Preliminary results of a phase I/II clinical trial.

  • Xiaobo Cheng‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2022‎

We performed a single-arm exploratory clinical trial that is ongoing and registered at ClinicalTrials.gov (NCT03093688). Patients were infused with autologous iNKT cells, PD-1 + CD8+ T cells, and dendritic cells every 3-5 weeks, which was considered 1 cycle. The primary endpoints were safety and objective tumor response. The preliminary results from the first three patients are reported here. The first patient received 16 cycles. Computed tomography (CT) examination revealed a stable disease (SD) response after 4 cycles and progressive disease (PD) response after 11 cycles. For the second patient that received 10 cycles, CT examination revealed an SD response after 4 cycles and a PD response after 9 cycles. For the third patient who was treated with 6 cycles, CT examination revealed an SD response after 4 cycles. The patients suffered from only grade 1-2 adverse events. iNKT cell and PD-1 + CD8+ T cell-based immunotherapy showed a manageable tolerability profile.


Identification and Validation of METTL3-Related Molecules for Predicting Prognosis and Efficacy of Immunotherapy in Gastric Cancer Based on m6A Methylome and Transcriptome Sequencing Analysis.

  • Shuran Chen‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Abnormal N6-methyladenosine (m6A) modification levels caused by METTL3 have been identified to be a critical regulator in human cancers, and its roles in the immune microenvironment and the relationship between targeted therapy and immunotherapy sensitivity in gastric cancer (GC) remain poorly understood. In this study, we assessed the transcriptome-wide m6A methylation profile after METTL3 overexpression by m6A sequencing and RNA sequencing in BGC-823 cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the function of core targets of METTL3. Eighteen methylation core molecules were identified in GC patients by combining transcriptome and methylome sequencing. GC patients can be separated into two subtypes based on the expression of 18 methylation core molecules. Furthermore, subgroup analysis showed that patients with different subtypes had a different OS, PFS, stage, grade, and TMB. Gene set enrichment analysis (GSEA) showed that immune-related pathways were enriched among subtype A. The ESTIMATE analysis suggested that the extent of infiltration of immune cells was different in two subtypes of GC patients. Tumor Immune Dysfunction and Exclusion (TIDE) and The Cancer Immunome Atlas (TCIA) database also showed that there were significant differences in the efficacy of immunotherapy among different types of GC patients. Altogether, our results reveal that METTL3-mediated m6A methylation modification is associated with the immune microenvironment and the effects of immunotherapy in GC patients. Our findings provide novel insights for clinicians in the diagnosis and optimal treatment of GC patients.


Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody.

  • Xinyu Song‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Immunotherapy for malignant tumors has made great progress, but many patients do not benefit from it. The complex intratumoral heterogeneity (ITH) hindered the in-depth exploration of immunotherapy. Conventional bulk sequencing has masked intratumor complexity, preventing a more detailed discovery of the impact of ITH on treatment efficacy. Hence, we initiated this study to explore ITH at the multi-omics spatial level and to seek prognostic biomarkers of immunotherapy efficacy considering the presence of ITH.


Production and characterization of human induced pluripotent stem cell line (PUMCi002-A) from a Krabbe patient related control to study disease mechanisms associated with GALC mutation.

  • Ya-Feng Lv‎ et al.
  • Stem cell research‎
  • 2022‎

A KD-control human induced pluripotent stem cells (iPSCs) line (PUMCi002-A) was generated from dermal fibroblasts of a Krabbe patient's father with a c.461C>A mutation in Galactocerebrosidase (GALC) gene. The pluripotency, in vitro differentiation potential and karyotype stability of generated iPSC line were analyzed and confirmed. This cell line can be exploited as a control iPSC line to better understand the mechanisms involved in GALC-associated Krabbe disease and provide plausible new therapeutic directions.


Identifying altered developmental pathways in human globoid cell leukodystrophy iPSCs-derived NSCs using transcriptome profiling.

  • Yafeng Lv‎ et al.
  • BMC genomics‎
  • 2023‎

Globoid cell leukodystrophy (GLD) is a devastating neurodegenerative disease characterized by widespread demyelination caused by galactocerebrosidase defects. Changes in GLD pathogenesis occurring at the molecular level have been poorly studied in human-derived neural cells. Patient-derived induced pluripotent stem cells (iPSCs) are a novel disease model for studying disease mechanisms and allow the generation of patient-derived neuronal cells in a dish.


Negative Co-stimulation Constrains T Cell Differentiation by Imposing Boundaries on Possible Cell States.

  • Spencer C Wei‎ et al.
  • Immunity‎
  • 2019‎

Co-stimulation regulates T cell activation, but it remains unclear whether co-stimulatory pathways also control T cell differentiation. We used mass cytometry to profile T cells generated in the genetic absence of the negative co-stimulatory molecules CTLA-4 and PD-1. Our data indicate that negative co-stimulation constrains the possible cell states that peripheral T cells can acquire. CTLA-4 imposes major boundaries on CD4+ T cell phenotypes, whereas PD-1 subtly limits CD8+ T cell phenotypes. By computationally reconstructing T cell differentiation paths, we identified protein expression changes that underlied the abnormal phenotypic expansion and pinpointed when lineage choice events occurred during differentiation. Similar alterations in T cell phenotypes were observed after anti-CTLA-4 and anti-PD-1 antibody blockade. These findings implicate negative co-stimulation as a key regulator and determinant of T cell differentiation and suggest that checkpoint blockade might work in part by altering the limits of T cell phenotypes.


Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.

  • Spencer C Wei‎ et al.
  • Cell‎
  • 2017‎

Immune-checkpoint blockade is able to achieve durable responses in a subset of patients; however, we lack a satisfying comprehension of the underlying mechanisms of anti-CTLA-4- and anti-PD-1-induced tumor rejection. To address these issues, we utilized mass cytometry to comprehensively profile the effects of checkpoint blockade on tumor immune infiltrates in human melanoma and murine tumor models. These analyses reveal a spectrum of tumor-infiltrating T cell populations that are highly similar between tumor models and indicate that checkpoint blockade targets only specific subsets of tumor-infiltrating T cell populations. Anti-PD-1 predominantly induces the expansion of specific tumor-infiltrating exhausted-like CD8 T cell subsets. In contrast, anti-CTLA-4 induces the expansion of an ICOS+ Th1-like CD4 effector population in addition to engaging specific subsets of exhausted-like CD8 T cells. Thus, our findings indicate that anti-CTLA-4 and anti-PD-1 checkpoint-blockade-induced immune responses are driven by distinct cellular mechanisms.


Using machine learning for mortality prediction and risk stratification in atezolizumab-treated cancer patients: Integrative analysis of eight clinical trials.

  • Yougen Wu‎ et al.
  • Cancer medicine‎
  • 2023‎

Few models exist to predict mortality in cancer patients receiving immunotherapy. Our aim was to build a machine learning-based risk stratification model for predicting mortality in atezolizumab-treated cancer patients.


Comprehensive Analysis of the Expression and Prognosis for TDO2 in Breast Cancer.

  • Qiang Liu‎ et al.
  • Molecular therapy oncolytics‎
  • 2020‎

A plethora of previous studies have been focused on the role of indoleamine 2,3-dioxygenase 1 (IDO1) in cancer immunity; however, the alternative way of targeting tryptophan 2,3-dioxygenase (TDO2) in cancer immunotherapy has been largely ignored. In particular, the specific role of TDO2 in breast cancer remains unclear. In the present study, we systematically explored and validated the expression and prognostic value of TDO2 in breast cancer using large-scale transcriptome data. We observed overexpression of TDO2 in many types of cancer tissues compared with adjacent normal tissues. TDO2 overexpression was revealed to be positively correlated with malignancy and tumor grade in breast cancer. TDO2 expression was higher in estrogen-negative breast cancer and triple-negative breast cancer, and it was correlated with worse outcome in breast cancer patients. TDO2 expression was correlated with immune infiltrates and tryptophan metabolism-related genes (IDO1 and kynureninase [KYNU]). Therefore, our results indicated that TDO2 plays a pivotal role in regulating the immune microenvironment and tryptophan metabolism in breast cancer, and it predicts poor prognosis in breast cancer, which suggests that TDO2 might be a promising novel immunotherapy target for breast cancer. Additionally, we established the concept that tryptophan-catabolizing enzymes (IDO1, IDO2, TDO2, and KYNU) may function through co-regulating the immunological microenvironment, and thus immunotherapy targeting IDO1 alone might be insufficient.


Identification of a Gene-Related Risk Signature in Melanoma Patients Using Bioinformatic Profiling.

  • Jing Wang‎ et al.
  • Journal of oncology‎
  • 2020‎

Gene signature has been used to predict prognosis in melanoma patients. Meanwhile, the efficacy of immunotherapy was correlated with particular genes expression or mutation. In this study, we systematically explored the gene expression pattern in the melanoma-immune microenvironment and its relationship with prognosis.


MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma.

  • Yu Qian‎ et al.
  • Cancer cell‎
  • 2023‎

Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: