Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21,552 papers

Using triple radio-immunotherapy to overcome cancer immunotherapy resistance.

  • Zengfu Zhang‎ et al.
  • Cancer biology & medicine‎
  • 2023‎

No abstract available


Allergen immunotherapy in pregnancy.

  • Paul Oykhman‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2015‎

Allergic diseases such as asthma and allergic rhinitis constitute a significant burden of disease among women of childbearing age and those who are pregnant. Adequately managing these conditions is paramount in reducing negative fetal outcomes as well as maternal complications during pregnancy. However, the potential for harm to both the mother and fetus demands carefully balancing efficacy and safety of treatment. Allergen immunotherapy (AIT) has emerged as a relatively safe and efficacious mode of therapy in both children and adults. AIT has also been considered for use during pregnancy.


Epicutaneous Immunotherapy Compared with Sublingual Immunotherapy in Mice Sensitized to Pollen (Phleum pratense).

  • Lucie Mondoulet‎ et al.
  • ISRN allergy‎
  • 2012‎

Background. The aim of this study was to compare the efficacy of epicutaneous immunotherapy (EPIT) to sublingual immunotherapy (SLIT) in a model of mice sensitized to Phleum pratense pollen. Methods. BALB/c mice were sensitized by sub-cutaneous route to pollen protein extract mixed treated for 8 weeks, using sham, EPIT, or SLIT. Measurements involved the serological response and cytokine profile from reactivated splenocytes, plethysmography after aerosol challenge to pollen, cell, and cytokine contents in the bronchoalveolar lavages (BALs). Results. After immunotherapy, sIgE was significantly decreased in the treated groups compared to sham (P < 0.001), whereas sIgG2a increased with EPIT and SLIT (P < 0.001 and P < 0.005 versus sham). Reactivated splenocytes secreted higher levels of Th2 cytokines with sham (P < 0.01). Penh values were higher in sham than EPIT and SLIT. Eosinophil recruitment in BAL was significantly reduced only by EPIT (P < 0.01). Conclusion. In this model of mice sensitized to pollen, EPIT was at least as efficient as SLIT.


Imaging Biomarkers in Immunotherapy.

  • Rosalyn A Juergens‎ et al.
  • Biomarkers in cancer‎
  • 2016‎

Immune-based therapies have been in use for decades but recent work with immune checkpoint inhibitors has now changed the landscape of cancer treatment as a whole. While these advances are encouraging, clinicians still do not have a consistent biomarker they can rely on that can accurately select patients or monitor response. Molecular imaging technology provides a noninvasive mechanism to evaluate tumors and may be an ideal candidate for these purposes. This review provides an overview of the mechanism of action of varied immunotherapies and the current strategies for monitoring patients with imaging. We then describe some of the key researches in the preclinical and clinical literature on the current uses of molecular imaging of the immune system and cancer.


Intratumoral Immunotherapy-Update 2019.

  • Omid Hamid‎ et al.
  • The oncologist‎
  • 2020‎

Intratumoral immunotherapies aim to trigger local and systemic immunologic responses via direct injection of immunostimulatory agents with the goal of tumor cell lysis, followed by release of tumor-derived antigens and subsequent activation of tumor-specific effector T cells. In 2019, a multitude of intratumoral immunotherapies with varied mechanisms of action, including nononcolytic viral therapies such as PV-10 and toll-like receptor 9 agonists and oncolytic viral therapies such as CAVATAK, Pexa-Vec, and HF10, have been extensively evaluated in clinical trials and demonstrated promising antitumor activity with tolerable toxicities in melanoma and other solid tumor types. Talimogene laherparepvec (T-VEC), a genetically modified herpes simplex virus type 1-based oncolytic immunotherapy, is the first oncolytic virus approved by the U.S. Food and Drug Administration for the treatment of unresectable melanoma recurrent after initial surgery. In patients with unresectable metastatic melanoma, T-VEC demonstrated a superior durable response rate (continuous complete response or partial response lasting ≥6 months) over subcutaneous GM-CSF (16.3% vs. 2.1%; p < .001). Responses were seen in both injected and uninjected lesions including visceral lesions, suggesting a systemic antitumor response. When combined with immune checkpoint inhibitors, T-VEC significantly improved response rates compared with single agent; similar results were seen with combinations of checkpoint inhibitors and other intratumoral therapies such as CAVATAK, HF10, and TLR9 agonists. In this review, we highlight recent results from clinical trials of key intratumoral immunotherapies that are being evaluated in the clinic, with a focus on T-VEC in the treatment of advanced melanoma as a model for future solid tumor indications. IMPLICATIONS FOR PRACTICE: This review provides oncologists with the latest information on the development of key intratumoral immunotherapies, particularly oncolytic viruses. Currently, T-VEC is the only U.S. Food and Drug Administration (FDA)-approved oncolytic immunotherapy. This article highlights the efficacy and safety data from clinical trials of T-VEC both as monotherapy and in combination with immune checkpoint inhibitors. This review summarizes current knowledge on intratumoral therapies, a novel modality with increased utility in cancer treatment, and T-VEC, the only U.S. FDA-approved oncolytic viral therapy, for medical oncologists. This review evaluates approaches to incorporate T-VEC into daily practice to offer the possibility of response in selected melanoma patients with manageable adverse events as compared with other available immunotherapies.


Trial watch: intratumoral immunotherapy.

  • Juliette Humeau‎ et al.
  • Oncoimmunology‎
  • 2021‎

While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.


An oncogene regulating chromatin favors response to immunotherapy: Oncogene CHAF1A and immunotherapy outcomes.

  • Leqian Ying‎ et al.
  • Oncoimmunology‎
  • 2024‎

Many biological processes related to cell function and fate begin with chromatin alterations, and many factors associated with the efficacy of immune checkpoint inhibitors (ICIs) are actually downstream events of chromatin alterations, such as genome changes, neoantigen production, and immune checkpoint expression. However, the influence of genes as chromatin regulators on the efficacy of ICIs remains elusive, especially in gastric cancer (GC). In this study, thirty out of 1593 genes regulating chromatin associated with a favorable prognosis were selected for GC. CHAF1A, a well-defined oncogene, was identified as the highest linkage hub gene. High CHAF1A expression were associated with microsatellite instability (MSI), high tumor mutation burden (TMB), high tumor neoantigen burden (TNB), high expressions of PD-L1 and immune effector genes, and live infiltration of immune cells. High CHAF1A expression indicated a favorable response and prognosis in immunotherapy of several cohorts, which was independent of MSI, TMB, TNB, PD-L1 expression, immune phenotype and transcriptome scoring, and improved patient selection based on these classic biomarkers. In vivo, CHAF1A knockdown alone inhibited tumor growth but it impaired the effect of an anti-PD-1 antibody by increasing the relative tumor proliferation rate and decreasing the survival benefit, potentially through the activation of TGF-β signaling. In conclusion, CHAF1A may be a novel biomarker for improving patient selection in immunotherapy.


Immunotherapy response and microenvironment provide biomarkers of immunotherapy options for patients with lung adenocarcinoma.

  • Xue Zhan‎ et al.
  • Frontiers in genetics‎
  • 2022‎

Background: Immunotherapy has been a promising approach option for lung cancer. Method: All the open-accessed data was obtained from the Cancer Genome Atlas (TCGA) database. All the analysis was conducted using the R software analysis. Results: Firstly, the genes differentially expressed in lung cancer immunotherapy responders and non-responders were identified. Then, the lung adenocarcinoma immunotherapy-related genes were determined by LASSO logistic regression and SVM-RFE, respectively. A total of 18 immunotherapy response-related genes were included in our investigation. Subsequently, we constructed the logistics score model. Patients with high logistics score had a better clinical effect on immunotherapy, with 63.2% of patients responding to immunotherapy, while only 12.1% of patients in the low logistics score group responded to immunotherapy. Moreover, we found that pathways related to immunotherapy were mainly enriched in metabolic pathways such as fatty acid metabolism, bile acid metabolism, oxidative phosphorylation, and carcinogenic pathways such as KRAS signaling. Logistics score was positively correlated with NK cells activated, Mast cells resting, Monocytes, Macrophages M2, dendritic cells resting, dendritic cells activated and eosinophils, while was negatively related to Tregs, macrophages M0, macrophages M1, and mast cells activated. In addition, ERVH48-1 was screened for single-cell exploration. The expression of ERVH48-1 increased in patients with distant metastasis, and ERVH48-1 was associated with pathways such as pancreas beta cells, spermatogenesis, G2M checkpoints and KRAS signaling. The result of quantitative real-time PCR showed that ERVH48-1 was upregulated in lung cancer cells. Conclusion: Our study developed an effective signature to predict the immunotherapy response of lung cancer patients.


Workshop on immunotherapy combinations. Society for Immunotherapy of Cancer annual meeting Bethesda, November 3, 2011.

  • Ivan Martinez Forero‎ et al.
  • Journal of translational medicine‎
  • 2012‎

Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and "perceived" business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace.


DNA Damage Repair Status Predicts Opposite Clinical Prognosis Immunotherapy and Non-Immunotherapy in Hepatocellular Carcinoma.

  • Yunfei Chen‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Immune checkpoint inhibitors(ICIs) that activate tumor-specific immune responses bring new hope for the treatment of hepatocellular carcinoma(HCC). However, there are still some problems, such as uncertain curative effects and low objective response rates, which limit the curative effect of immunotherapy. Therefore, it is an urgent problem to guide the use of ICIs in HCC based on molecular typing. We downloaded the The Cancer Genome Atlas-Liver hepatocellular carcinoma(TCGA-LIHC) and Mongolian-LIHC cohort. Unsupervised clustering was applied to the highly variable data regarding expression of DNA damage repair(DDR). The CIBERSORT was used to evaluate the proportions of immune cells. The connectivity map(CMap) and pRRophetic algorithms were used to predict the drug sensitivity. There were significant differences in DDR molecular subclasses in HCC(DDR1 and DDR2), and DDR1 patients had low expression of DDR-related genes, while DDR2 patients had high expression of DDR-related genes. Of the patients who received traditional treatment, DDR2 patients had significantly worse overall survival(OS) than DDR1 patients. In contrast, of the patients who received ICIs, DDR2 patients had significantly prolonged OS compared with DDR1 patients. Of the patients who received traditional treatment, patients with high DDR scores had worse OS than those with low DDR scores. However, the survival of patients with high DDR scores after receiving ICIs was significantly higher than that of patients with low DDR scores. The DDR scores of patients in the DDR2 group were significantly higher than those of patients in the DDR1 group. The tumor microenvironment(TME) of DDR2 patients was highly infiltrated by activated immune cells, immune checkpoint molecules and proinflammatory molecules and antigen presentation-related molecules. In this study, HCC patients were divided into the DDR1 and DDR2 group. Moreover, DDR status may serve as a potential biomarker to predict opposite clinical prognosis immunotherapy and non-immunotherapy in HCC.


Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma.

  • Ashish M Kamat‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2017‎

The standard of care for most patients with non-muscle-invasive bladder cancer (NMIBC) is immunotherapy with intravesical Bacillus Calmette-Guérin (BCG), which activates the immune system to recognize and destroy malignant cells and has demonstrated durable clinical benefit. Urologic best-practice guidelines and consensus reports have been developed and strengthened based on data on the timing, dose, and duration of therapy from randomized clinical trials, as well as by critical evaluation of criteria for progression. However, these reports have not penetrated the community, and many patients do not receive appropriate therapy. Additionally, several immune checkpoint inhibitors have recently been approved for treatment of metastatic disease. The approval of immune checkpoint blockade for patients with platinum-resistant or -ineligible metastatic bladder cancer has led to considerations of expanded use for both advanced and, potentially, localized disease. To address these issues and others surrounding the appropriate use of immunotherapy for the treatment of bladder cancer, the Society for Immunotherapy of Cancer (SITC) convened a Task Force of experts, including physicians, patient advocates, and nurses, to address issues related to patient selection, toxicity management, clinical endpoints, as well as the combination and sequencing of therapies. Following the standard approach established by the Society for other cancers, a systematic literature review and analysis of data, combined with consensus voting was used to generate guidelines. Here, we provide a consensus statement for the use of immunotherapy in patients with bladder cancer, with plans to update these recommendations as the field progresses.


Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of lymphoma.

  • Sattva S Neelapu‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

The recent development and clinical implementation of novel immunotherapies for the treatment of Hodgkin and non-Hodgkin lymphoma have improved patient outcomes across subgroups. The rapid introduction of immunotherapeutic agents into the clinic, however, has presented significant questions regarding optimal treatment scheduling around existing chemotherapy/radiation options, as well as a need for improved understanding of how to properly manage patients and recognize toxicities. To address these challenges, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts in lymphoma to develop a clinical practice guideline for the education of healthcare professionals on various aspects of immunotherapeutic treatment. The panel discussed subjects including treatment scheduling, immune-related adverse events (irAEs), and the integration of immunotherapy and stem cell transplant to form recommendations to guide healthcare professionals treating patients with lymphoma.


Targeting CD47 for cancer immunotherapy.

  • Zhongxing Jiang‎ et al.
  • Journal of hematology & oncology‎
  • 2021‎

Much progress has been made in targeting CD47 for cancer immunotherapy in solid tumors (ST) and hematological malignancies. We summarized the CD47-related clinical research and analyzed the research trend both in the USA and in China. As of August 28, 2021, there are a total 23 related therapeutic agents with 46 clinical trials in the NCT registry platform. Among these trials, 29 are in ST, 14 in hematological malignancies and 3 in both solid tumor and hematological malignancy. The ST include gastric cancer, head and neck squamous cell carcinoma and leiomyosarcoma, while the hematological malignancies include non-Hodgkin's lymphoma, acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and chronic myeloid leukemia. Majority of the CD47-related clinical trials are at the early phases, such as 31 at phase I, 14 at phase II and 1 at phase III in the USA and 9, 6, 1, in China, respectively. The targets and spectrums of mechanism of action include 26 with mono-specific and 20 with bi-specific targets in the USA and 13 with mono-specific and 3 with bi-specific targets in China. The new generation CD47 antibodies have demonstrated promising results, and it is highly hopeful that some candidate agents will emerge and make into clinical application to meet the urgent needs of patients.


Bacterial immunotherapy of gastrointestinal tumors.

  • Michael Linnebacher‎ et al.
  • Langenbeck's archives of surgery‎
  • 2012‎

Cancer immunotherapy using bacteria dates back over 150 years. The deeper understanding on how the immune system interferes with the tumor microenvironment has led to the re-emergence of bacteria or their related products in immunotherapeutic concepts. In this review, we discuss recent approaches on experimental bacteriolytic therapy, emphasizing the specific interplay between bacteria, immune cells and tumor cells to break the tumor-induced tolerance.


Oncolytic viruses for cancer immunotherapy.

  • Otto Hemminki‎ et al.
  • Journal of hematology & oncology‎
  • 2020‎

In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains.As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors.Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.


Cell Tracking in Cancer Immunotherapy.

  • Justine Perrin‎ et al.
  • Frontiers in medicine‎
  • 2020‎

The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged. They are designed to improve detection sensitivity and allow for a better preservation of cell activity and integrity. These methods include the monitoring of therapeutic cells but also of all cells related to a specific disease or therapeutic approach. Labeling of therapeutic cells for imaging may be performed in vitro, with some limitations on sensitivity and duration of observation. Alternatively, in vivo cell tracking may be performed by genetically engineering cells or mice so that may be revealed through imaging. In addition, SPECT or PET imaging based on monoclonal antibodies has been used to detect tumors in the human body for years. They may be used to detect and quantify the presence of specific cells within cancer lesions. These methods have been the object of several recent reviews that have concentrated on technical aspects, stressing the differences between direct and indirect labeling. They are briefly described here by distinguishing ex vivo (labeling cells with paramagnetic, radioactive, or fluorescent tracers) and in vivo (in vivo capture of injected radioactive, fluorescent or luminescent tracers, or by using labeled antibodies, ligands, or pre-targeted clickable substrates) imaging methods. This review focuses on cell tracking in specific therapeutic applications, namely cell therapy, and particularly CAR (Chimeric Antigen Receptor) T-cell therapy, which is a fast-growing research field with various therapeutic indications. The potential impact of imaging on the progress of these new therapeutic modalities is discussed.


Immunotherapy targets in pediatric cancer.

  • Rimas J Orentas‎ et al.
  • Frontiers in oncology‎
  • 2012‎

Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer.


Cellular backpacks for macrophage immunotherapy.

  • C Wyatt Shields‎ et al.
  • Science advances‎
  • 2020‎

Adoptive cell transfers have emerged as a disruptive approach to treat disease in a manner that is more specific than using small-molecule drugs; however, unlike traditional drugs, cells are living entities that can alter their function in response to environmental cues. In the present study, we report an engineered particle referred to as a "backpack" that can robustly adhere to macrophage surfaces and regulate cellular phenotypes in vivo. Backpacks evade phagocytosis for several days and release cytokines to continuously guide the polarization of macrophages toward antitumor phenotypes. We demonstrate that these antitumor phenotypes are durable, even in the strongly immunosuppressive environment of a murine breast cancer model. Conserved phenotypes led to reduced metastatic burdens and slowed tumor growths compared with those of mice treated with an equal dose of macrophages with free cytokine. Overall, these studies highlight a new pathway to control and maintain phenotypes of adoptive cellular immunotherapies.


Cancer testis antigen and immunotherapy.

  • Deepa Kolaseri Krishnadas‎ et al.
  • ImmunoTargets and therapy‎
  • 2013‎

The identification of cancer testis (CT) antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1), melanoma antigen family A, 3 (MAGE-A3), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) in various malignancies, and presents our current understanding of CT antigen based immunotherapy.


Biological bases of cancer immunotherapy.

  • Maryanne M Gonzales Carazas‎ et al.
  • Expert reviews in molecular medicine‎
  • 2021‎

Immunotherapy has changed the landscape of cancer treatment and has significantly improved the outcome of several cancer types including breast, lung, colorectal and prostate. Neoantigen recognition and immune checkpoint inhibitors are nowadays the milestones of different immunotherapeutic regimes; however, high cost, primary and acquired resistance and the high variability of responses make their extensive use difficult. The development of better predictive biomarkers that represent tumour diversity shows promise because there is a significant body of clinical data showing a spectrum of immunotherapeutic responses that might be related back to their specific characteristics. This article makes a conceptual and historical review to summarise the main advances in our understanding of the role of the immune system in cancer, while describing the methodological details that have been successfully implemented on cancer treatments and that may hold the key to improved therapeutic approaches.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: