2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Conformation of sister chromatids in the replicated human genome.

  • Michael Mitter‎ et al.
  • Nature‎
  • 2020‎

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 analysis has revealed a complex genomic landscape of internal chromosomal structures in vertebrate cells3-7, but the identical sequence of sister chromatids has made it difficult to determine how they topologically interact in replicated chromosomes. Here we describe sister-chromatid-sensitive Hi-C (scsHi-C), which is based on labelling of nascent DNA with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes reveal that sister-chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister-chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired and are characterized by facultative heterochromatin and insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister-chromatid topologies and our scsHi-C technology will make it possible to investigate how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.


Chromosome-specific nonrandom sister chromatid segregation during stem-cell division.

  • Swathi Yadlapalli‎ et al.
  • Nature‎
  • 2013‎

Adult stem cells undergo asymmetric cell division to self-renew and give rise to differentiated cells that comprise mature tissue. Sister chromatids may be distinguished and segregated nonrandomly in asymmetrically dividing stem cells, although the underlying mechanism and the purpose it may serve remain elusive. Here we develop the CO-FISH (chromosome orientation fluorescence in situ hybridization) technique with single-chromosome resolution and show that sister chromatids of X and Y chromosomes, but not autosomes, are segregated nonrandomly during asymmetric divisions of Drosophila male germline stem cells. This provides the first direct evidence, to our knowledge, that two sister chromatids containing identical genetic information can be distinguished and segregated nonrandomly during asymmetric stem-cell divisions. We further show that the centrosome, SUN-KASH nuclear envelope proteins and Dnmt2 (also known as Mt2) are required for nonrandom sister chromatid segregation. Our data indicate that the information on X and Y chromosomes that enables nonrandom segregation is primed during gametogenesis in the parents. Moreover, we show that sister chromatid segregation is randomized in germline stem cell overproliferation and dedifferentiated germline stem cells. We propose that nonrandom sister chromatid segregation may serve to transmit distinct information carried on two sister chromatids to the daughters of asymmetrically dividing stem cells.


Basis of catalytic assembly of the mitotic checkpoint complex.

  • Alex C Faesen‎ et al.
  • Nature‎
  • 2017‎

In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1-MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein-protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.


BAF complexes facilitate decatenation of DNA by topoisomerase IIα.

  • Emily C Dykhuizen‎ et al.
  • Nature‎
  • 2013‎

Recent exon-sequencing studies of human tumours have revealed that subunits of BAF (mammalian SWI/SNF) complexes are mutated in more than 20% of all human malignancies, but the mechanisms involved in tumour suppression are unclear. BAF chromatin-remodelling complexes are polymorphic assemblies that use energy provided by ATP hydrolysis to regulate transcription through the control of chromatin structure and the placement of Polycomb repressive complex 2 (PRC2) across the genome. Several proteins dedicated to this multisubunit complex, including BRG1 (also known as SMARCA4) and BAF250a (also known as ARID1A), are mutated at frequencies similar to those of recognized tumour suppressors. In particular, the core ATPase BRG1 is mutated in 5-10% of childhood medulloblastomas and more than 15% of Burkitt's lymphomas. Here we show a previously unknown function of BAF complexes in decatenating newly replicated sister chromatids, a requirement for proper chromosome segregation during mitosis. We find that deletion of Brg1 in mouse cells, as well as the expression of BRG1 point mutants identified in human tumours, leads to anaphase bridge formation (in which sister chromatids are linked by catenated strands of DNA) and a G2/M-phase block characteristic of the decatenation checkpoint. Endogenous BAF complexes interact directly with endogenous topoisomerase IIα (TOP2A) through BAF250a and are required for the binding of TOP2A to approximately 12,000 sites across the genome. Our results demonstrate that TOP2A chromatin binding is dependent on the ATPase activity of BRG1, which is compromised in oncogenic BRG1 mutants. These studies indicate that the ability of TOP2A to prevent DNA entanglement at mitosis requires BAF complexes and suggest that this activity contributes to the role of BAF subunits as tumour suppressors.


Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN.

  • Nausica Arnoult‎ et al.
  • Nature‎
  • 2017‎

Classical non-homologous end joining (cNHEJ) and homologous recombination compete for the repair of double-stranded DNA breaks during the cell cycle. Homologous recombination is inhibited during the G1 phase of the cell cycle, but both pathways are active in the S and G2 phases. However, it is unclear why cNHEJ does not always outcompete homologous recombination during the S and G2 phases. Here we show that CYREN (cell cycle regulator of NHEJ) is a cell-cycle-specific inhibitor of cNHEJ. Suppression of CYREN allows cNHEJ to occur at telomeres and intrachromosomal breaks during the S and G2 phases, and cells lacking CYREN accumulate chromosomal aberrations upon damage induction, specifically outside the G1 phase. CYREN acts by binding to the Ku70/80 heterodimer and preferentially inhibits cNHEJ at breaks with overhangs by protecting them. We therefore propose that CYREN is a direct cell-cycle-dependent inhibitor of cNHEJ that promotes error-free repair by homologous recombination during cell cycle phases when sister chromatids are present.


Biochemical reconstitution of topological DNA binding by the cohesin ring.

  • Yasuto Murayama‎ et al.
  • Nature‎
  • 2014‎

Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for faithful chromosome segregation in mitosis. Cohesin also has vital roles in DNA repair and transcriptional regulation. The ring-shaped cohesin complex is thought to encircle sister DNA strands, but its molecular mechanism of action is poorly understood and the biochemical reconstitution of cohesin activity in vitro has remained an unattained goal. Here we reconstitute cohesin loading onto DNA using purified fission yeast cohesin and its loader complex, Mis4(Scc2)-Ssl3(Scc4) (Schizosaccharomyces pombe gene names appear throughout with their more commonly known Saccharomyces cerevisiae counterparts added in superscript). Incubation of cohesin with DNA leads to spontaneous topological loading, but this remains inefficient. The loader contacts cohesin at multiple sites around the ring circumference, including the hitherto enigmatic Psc3(Scc3) subunit, and stimulates cohesin's ATPase, resulting in efficient topological loading. The in vitro reconstitution of cohesin loading onto DNA provides mechanistic insight into the initial steps of the establishment of sister chromatid cohesion and other chromosomal processes mediated by cohesin.


H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex.

  • Giulia Saredi‎ et al.
  • Nature‎
  • 2016‎

After DNA replication, chromosomal processes including DNA repair and transcription take place in the context of sister chromatids. While cell cycle regulation can guide these processes globally, mechanisms to distinguish pre- and post-replicative states locally remain unknown. Here we reveal that new histones incorporated during DNA replication provide a signature of post-replicative chromatin, read by the human TONSL–MMS22L homologous recombination complex. We identify the TONSL ankyrin repeat domain (ARD) as a reader of histone H4 tails unmethylated at K20 (H4K20me0), which are specific to new histones incorporated during DNA replication and mark post-replicative chromatin until the G2/M phase of the cell cycle. Accordingly, TONSL–MMS22L binds new histones H3–H4 both before and after incorporation into nucleosomes, remaining on replicated chromatin until late G2/M. H4K20me0 recognition is required for TONSL–MMS22L binding to chromatin and accumulation at challenged replication forks and DNA lesions. Consequently, TONSL ARD mutants are toxic, compromising genome stability, cell viability and resistance to replication stress. Together, these data reveal a histone-reader-based mechanism for recognizing the post-replicative state, offering a new angle to understand DNA repair with the potential for targeted cancer therapy.


HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

  • Matthew A Deardorff‎ et al.
  • Nature‎
  • 2012‎

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation.

  • Valerie Garcia‎ et al.
  • Nature‎
  • 2015‎

Meiotic recombination is a critical step in gametogenesis for many organisms, enabling the creation of genetically diverse haploid gametes. In each meiotic cell, recombination is initiated by numerous DNA double-strand breaks (DSBs) created by Spo11, the evolutionarily conserved topoisomerase-like protein, but how these DSBs are distributed relatively uniformly across the four chromatids that make up each chromosome pair is poorly understood. Here we employ Saccharomyces cerevisiae to demonstrate distance-dependent DSB interference in cis (in which the occurrence of a DSB suppresses adjacent DSB formation)--a process that is mediated by the conserved DNA damage response kinase, Tel1(ATM). The inhibitory function of Tel1 acts on a relatively local scale, while over large distances DSBs have a tendency to form independently of one another even in the presence of Tel1. Notably, over very short distances, loss of Tel1 activity causes DSBs to cluster within discrete zones of concerted DSB activity. Our observations support a hierarchical view of recombination initiation where Tel1(ATM) prevents clusters of DSBs, and further suppresses DSBs within the surrounding chromosomal region. Such collective negative regulation will help to ensure that recombination events are dispersed evenly and arranged optimally for genetic exchange and efficient chromosome segregation.


Ensuring meiotic DNA break formation in the mouse pseudoautosomal region.

  • Laurent Acquaviva‎ et al.
  • Nature‎
  • 2020‎

Sex chromosomes in males of most eutherian mammals share only a small homologous segment, the pseudoautosomal region (PAR), in which the formation of double-strand breaks (DSBs), pairing and crossing over must occur for correct meiotic segregation1,2. How cells ensure that recombination occurs in the PAR is unknown. Here we present a dynamic ultrastructure of the PAR and identify controlling cis- and trans-acting factors that make the PAR the hottest segment for DSB formation in the male mouse genome. Before break formation, multiple DSB-promoting factors hyperaccumulate in the PAR, its chromosome axes elongate and the sister chromatids separate. These processes are linked to heterochromatic mo-2 minisatellite arrays, and require MEI4 and ANKRD31 proteins but not the axis components REC8 or HORMAD1. We propose that the repetitive DNA sequence of the PAR confers unique chromatin and higher-order structures that are crucial for recombination. Chromosome synapsis triggers collapse of the elongated PAR structure and, notably, oocytes can be reprogrammed to exhibit spermatocyte-like levels of DSBs in the PAR simply by delaying or preventing synapsis. Thus, the sexually dimorphic behaviour of the PAR is in part a result of kinetic differences between the sexes in a race between the maturation of the PAR structure, formation of DSBs and completion of pairing and synapsis. Our findings establish a mechanistic paradigm for the recombination of sex chromosomes during meiosis.


Cohesin acetylation speeds the replication fork.

  • Marie-Emilie Terret‎ et al.
  • Nature‎
  • 2009‎

Cohesin not only links sister chromatids but also inhibits the transcriptional machinery's interaction with and movement along chromatin. In contrast, replication forks must traverse such cohesin-associated obstructions to duplicate the entire genome in S phase. How this occurs is unknown. Through single-molecule analysis, we demonstrate that the replication factor C (RFC)-CTF18 clamp loader (RFC(CTF18)) controls the velocity, spacing and restart activity of replication forks in human cells and is required for robust acetylation of cohesin's SMC3 subunit and sister chromatid cohesion. Unexpectedly, we discovered that cohesin acetylation itself is a central determinant of fork processivity, as slow-moving replication forks were found in cells lacking the Eco1-related acetyltransferases ESCO1 or ESCO2 (refs 8-10) (including those derived from Roberts' syndrome patients, in whom ESCO2 is biallelically mutated) and in cells expressing a form of SMC3 that cannot be acetylated. This defect was a consequence of cohesin's hyperstable interaction with two regulatory cofactors, WAPL and PDS5A (refs 12, 13); removal of either cofactor allowed forks to progress rapidly without ESCO1, ESCO2, or RFC(CTF18). Our results show a novel mechanism for clamp-loader-dependent fork progression, mediated by the post-translational modification and structural remodelling of the cohesin ring. Loss of this regulatory mechanism leads to the spontaneous accrual of DNA damage and may contribute to the abnormalities of the Roberts' syndrome cohesinopathy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: