Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 519 papers

Helical coiling of metaphase chromatids.

  • Ivona Kubalová‎ et al.
  • Nucleic acids research‎
  • 2023‎

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Physical Proximity of Sister Chromatids Promotes Top2-Dependent Intertwining.

  • Nicholas Sen‎ et al.
  • Molecular cell‎
  • 2016‎

Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.


Conformation of sister chromatids in the replicated human genome.

  • Michael Mitter‎ et al.
  • Nature‎
  • 2020‎

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 analysis has revealed a complex genomic landscape of internal chromosomal structures in vertebrate cells3-7, but the identical sequence of sister chromatids has made it difficult to determine how they topologically interact in replicated chromosomes. Here we describe sister-chromatid-sensitive Hi-C (scsHi-C), which is based on labelling of nascent DNA with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes reveal that sister-chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister-chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired and are characterized by facultative heterochromatin and insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister-chromatid topologies and our scsHi-C technology will make it possible to investigate how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.


Cohesin-mediated DNA loop extrusion resolves sister chromatids in G2 phase.

  • Paul Batty‎ et al.
  • The EMBO journal‎
  • 2023‎

Genetic information is stored in linear DNA molecules, which are highly folded inside cells. DNA replication along the folded template path yields two sister chromatids that initially occupy the same nuclear region in an intertwined arrangement. Dividing cells must disentangle and condense the sister chromatids into separate bodies such that a microtubule-based spindle can move them to opposite poles. While the spindle-mediated transport of sister chromatids has been studied in detail, the chromosome-intrinsic mechanics presegregating sister chromatids have remained elusive. Here, we show that human sister chromatids resolve extensively already during interphase, in a process dependent on the loop-extruding activity of cohesin, but not that of condensins. Increasing cohesin's looping capability increases sister DNA resolution in interphase nuclei to an extent normally seen only during mitosis, despite the presence of abundant arm cohesion. That cohesin can resolve sister chromatids so extensively in the absence of mitosis-specific activities indicates that DNA loop extrusion is a generic mechanism for segregating replicated genomes, shared across different Structural Maintenance of Chromosomes (SMC) protein complexes in all kingdoms of life.


Protocol for High-Throughput Analysis of Sister-Chromatids Contacts.

  • Elena Espinosa‎ et al.
  • STAR protocols‎
  • 2020‎

Sister chromatid interactions are a key step to ensure the successful segregation of sister chromatids after replication. Our knowledge about this phenomenon is mostly based on microscopy approaches, which have some constraints such as resolution limit and the impossibility of studying several genomic positions at the same time. Here, we present a protocol for Hi-SC2, a high-throughput sequencing-based method, to monitor sister chromatid contacts after replication at high resolution throughout the genome, which we applied to study cohesion in Vibrio cholerae. For complete details on the use and execution of this protocol, please refer to Espinosa et al. (2020).


DNA combing versus DNA spreading and the separation of sister chromatids.

  • Alice Meroni‎ et al.
  • The Journal of cell biology‎
  • 2024‎

DNA combing and DNA spreading are two central approaches for studying DNA replication fork dynamics genome-wide at single-molecule resolution by distributing labeled genomic DNA on coverslips or slides for immunodetection. Perturbations in DNA replication fork dynamics can differentially affect either leading or lagging strand synthesis, for example, in instances where replication is blocked by a lesion or obstacle on only one of the two strands. Thus, we sought to investigate whether the DNA combing and/or spreading approaches are suitable for resolving adjacent sister chromatids during DNA replication, thereby enabling the detection of DNA replication dynamics within individual nascent strands. To this end, we developed a thymidine labeling scheme that discriminates between these two possibilities. Our data suggests that DNA combing resolves sister chromatids, allowing the detection of strand-specific alterations, whereas DNA spreading typically does not. These findings have important implications when interpreting DNA replication dynamics from data obtained by these two commonly used techniques.


BubR1- and Polo-coated DNA tethers facilitate poleward segregation of acentric chromatids.

  • Anne Royou‎ et al.
  • Cell‎
  • 2010‎

The mechanisms that safeguard cells against chromosomal instability (CIN) are of great interest, as CIN contributes to tumorigenesis. To gain insight into these mechanisms, we studied the behavior of cells entering mitosis with damaged chromosomes. We used the endonuclease I-CreI to generate acentric chromosomes in Drosophila larvae. While I-CreI expression produces acentric chromosomes in the majority of neuronal stem cells, remarkably, it has no effect on adult survival. Our live studies reveal that acentric chromatids segregate efficiently to opposite poles. The acentric chromatid poleward movement is mediated through DNA tethers decorated with BubR1, Polo, INCENP, and Aurora-B. Reduced BubR1 or Polo function results in abnormal segregation of acentric chromatids, a decrease in acentric chromosome tethering, and a great reduction in adult survival. We propose that BubR1 and Polo facilitate the accurate segregation of acentric chromatids by maintaining the integrity of the tethers that connect acentric chromosomes to their centric partners.


Detecting chromatin interactions between and along sister chromatids with SisterC.

  • Marlies E Oomen‎ et al.
  • Nature methods‎
  • 2020‎

Chromosome segregation requires both compaction and disentanglement of sister chromatids. We describe SisterC, a chromosome conformation capture assay that distinguishes interactions between and along identical sister chromatids. SisterC employs 5-bromo-2'-deoxyuridine (BrdU) incorporation during S-phase to label newly replicated strands, followed by Hi-C and then the destruction of 5-bromodeoxyuridine-containing strands via Hoechst/ultraviolet treatment. After sequencing of the remaining intact strands, this allows assignment of Hi-C products as inter- and intra-sister interactions based on the strands that reads are mapped to. We performed SisterC on mitotic Saccharomyces cerevisiae cells. We find precise alignment of sister chromatids at centromeres. Along arms, sister chromatids are less precisely aligned, with inter-sister connections every ~35 kilobase (kb). Inter-sister interactions occur between cohesin binding sites that are often offset by 5 to 25 kb. Along sister chromatids, cohesin results in the formation of loops of up to 50 kb. SisterC allows study of the complex interplay between sister chromatid compaction and their segregation during mitosis.


Connections between sister and non-sister telomeres of segregating chromatids maintain euploidy.

  • Brandt Warecki‎ et al.
  • Current biology : CB‎
  • 2023‎

The complete separation of sister chromatids during anaphase is a fundamental requirement for successful mitosis. Therefore, divisions with either persistent DNA-based connections or lagging chromosome fragments threaten aneuploidy if unresolved. Here, we demonstrate the existence of an anaphase mechanism in normally dividing cells in which pervasive connections between telomeres of segregating chromosomes aid in rescuing lagging chromosome fragments. We observe that in a large proportion of Drosophila melanogaster neuronal stem cell divisions, early anaphase sister and non-sister chromatids remain connected by thin telomeric DNA threads. Normally, these threads are resolved in mid-to-late anaphase via a spatial mechanism. However, we find that the presence of a nearby unrepaired DNA break recruits histones, BubR1 kinase, Polo kinase, Aurora B kinase, and BAF to the telomeric thread of the broken chromosome, stabilizing it. Stabilized connections then aid lagging chromosome rescue. These results suggest a model in which pervasive anaphase telomere-telomere connections that are normally resolved quickly can instead be stabilized to retain wayward chromosome fragments. Thus, the liability of persistent anaphase inter-chromosomal connections in normal divisions may be offset by their ability to maintain euploidy in the face of chromosome damage and genome loss.


H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids.

  • Kyosuke Nakamura‎ et al.
  • Nature cell biology‎
  • 2019‎

Genotoxic DNA double-strand breaks (DSBs) can be repaired by error-free homologous recombination (HR) or mutagenic non-homologous end-joining1. HR supresses tumorigenesis1, but is restricted to the S and G2 phases of the cell cycle when a sister chromatid is present2. Breast cancer type 1 susceptibility protein (BRCA1) promotes HR by antagonizing the anti-resection factor TP53-binding protein 1(53BP1) (refs. 2-5), but it remains unknown how BRCA1 function is limited to the S and G2 phases. We show that BRCA1 recruitment requires recognition of histone H4 unmethylated at lysine 20 (H4K20me0), linking DSB repair pathway choice directly to sister chromatid availability. We identify the ankyrin repeat domain of BRCA1-associated RING domain protein 1 (BARD1)-the obligate BRCA1 binding partner3-as a reader of H4K20me0 present on new histones in post-replicative chromatin6. BARD1 ankyrin repeat domain mutations disabling H4K20me0 recognition abrogate accumulation of BRCA1 at DSBs, causing aberrant build-up of 53BP1, and allowing anti-resection activity to prevail in S and G2. Consequently, BARD1 recognition of H4K20me0 is required for HR and resistance to poly (ADP-ribose) polymerase inhibitors. Collectively, this reveals that BRCA1-BARD1 monitors the replicative state of the genome to oppose 53BP1 function, routing only DSBs within sister chromatids to HR.


DNA Combing versus DNA Spreading and the Separation of Sister Chromatids.

  • Alice Meroni‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

DNA combing and DNA spreading are two central approaches for studying DNA replication fork dynamics genome-wide at single-molecule resolution by distributing labeled genomic DNA on coverslips or slides for immunodetection. Perturbations in DNA replication fork dynamics can differentially affect either leading or lagging strand synthesis, for example in instances where replication is blocked by a lesion or obstacle on only one of the two strands. Thus, we sought to investigate whether the DNA combing and/or spreading approaches are suitable for resolving adjacent sister chromatids during DNA replication, thereby enabling the detection of DNA replication dynamics within individual nascent strands. To this end, we developed a thymidine labeling scheme that discriminates between these two possibilities. Our data suggests that DNA combing resolves single chromatids, allowing the detection of strand-specific alterations, whereas DNA spreading does not. These findings have important implications when interpreting DNA replication dynamics from data obtained by these two commonly used techniques.


BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids.

  • Gurushankar Chandramouly‎ et al.
  • Nature communications‎
  • 2013‎

BRCA1 controls early steps of the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination, but has no known role following Rad51-mediated synapsis. Here we show that BRCA1 influences post-synaptic homologous recombination events, controlling the balance between short- (STGC) and long-tract gene conversion (LTGC) between sister chromatids. Brca1 mutant cells reveal a bias towards LTGC that is corrected by expression of wild-type but not cancer-predisposing BRCA1 alleles. The LTGC bias is enhanced by depletion of CtIP but reversed by inhibition of 53BP1, implicating DNA end resection as a contributor to the STGC/LTGC balance. The impact of BRCA1/CtIP loss on the STGC/LTGC balance is abolished when the second (non-invading) end of the break is unable to support termination of STGC by homologous pairing (annealing). This suggests that BRCA1/CtIP-mediated processing of the second end of the break controls the annealing step that normally terminates SDSA, thereby suppressing the error-prone LTGC outcome.


Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis.

  • Hui Jin‎ et al.
  • The Journal of cell biology‎
  • 2009‎

During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.


Drosophila CAP-D2 is required for condensin complex stability and resolution of sister chromatids.

  • Ellada Savvidou‎ et al.
  • Journal of cell science‎
  • 2005‎

The precise mechanism of chromosome condensation and decondensation remains a mystery, despite progress over the last 20 years aimed at identifying components essential to the mitotic compaction of the genome. In this study, we analyse the localization and role of the CAP-D2 non-SMC condensin subunit and its effect on the stability of the condensin complex. We demonstrate that a condensin complex exists in Drosophila embryos, containing CAP-D2, the anticipated SMC2 and SMC4 proteins, the CAP-H/Barren and CAP-G (non-SMC) subunits. We show that CAP-D2 is a nuclear protein throughout interphase, increasing in level during S phase, present on chromosome axes in mitosis, and still present on chromosomes as they start to decondense late in mitosis. We analysed the consequences of CAP-D2 loss after dsRNA-mediated interference, and discovered that the protein is essential for chromosome arm and centromere resolution. The loss of CAP-D2 after RNAi has additional downstream consequences on the stability of CAP-H, the localization of DNA topoisomerase II and other condensin subunits, and chromosome segregation. Finally, we discovered that even after interfering with two components important for chromosome architecture (DNA topoisomerase II and condensin), chromosomes were still able to compact, paving the way for the identification of further components or activities required for this essential process.


SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development.

  • Feng-Xia Yin‎ et al.
  • PloS one‎
  • 2013‎

Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.


Chromatids segregate without centrosomes during Caenorhabditis elegans mitosis in a Ran- and CLASP-dependent manner.

  • Wallis Nahaboo‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

During mitosis, chromosomes are connected to a microtubule-based spindle. Current models propose that displacement of the spindle poles and/or the activity of kinetochore microtubules generate mechanical forces that segregate sister chromatids. Using laser destruction of the centrosomes during Caenorhabditis elegans mitosis, we show that neither of these mechanisms is necessary to achieve proper chromatid segregation. Our results strongly suggest that an outward force generated by the spindle midzone, independently of centrosomes, is sufficient to segregate chromosomes in mitotic cells. Using mutant and RNAi analysis, we show that the microtubule-bundling protein SPD-1/MAP-65 and BMK-1/kinesin-5 act as a brake opposing the force generated by the spindle midzone. Conversely, we identify a novel role for two microtubule-growth and nucleation agents, Ran and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is continuously required to sustain chromosome segregation during mitosis.


FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids.

  • Sarmi Nath‎ et al.
  • Nucleic acids research‎
  • 2017‎

The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.


Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids.

  • Yen-Ting Liu‎ et al.
  • Nucleic acids research‎
  • 2013‎

The 2-micron plasmid, a high copy extrachromosomal element in Saccharomyces cerevisiae, propagates itself with nearly the same stability as the chromosomes of its host. Plasmid stability is conferred by a partitioning system consisting of the plasmid-coded proteins Rep1 and Rep2 and a cis-acting locus STB. Circumstantial evidence suggests that the partitioning system couples plasmid segregation to chromosome segregation during mitosis. However, the coupling mechanism has not been elucidated. In order to probe into this question more incisively, we have characterized the segregation of a single-copy STB reporter plasmid by manipulating mitosis to force sister chromatids to co-segregate either without mother-daughter bias or with a finite daughter bias. We find that the STB plasmid sisters are tightly correlated to sister chromatids in the extents of co-segregation as well as the bias in co-segregation under these conditions. Furthermore, this correlation is abolished by delaying spindle organization or preventing cohesin assembly during a cell cycle. Normal segregation of the 2-micron plasmid has been shown to require spindle integrity and the cohesin complex. Our results are accommodated by a model in which spindle- and cohesin-dependent association of plasmid sisters with sister chromatids promotes their segregation by a hitchhiking mechanism.


The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate.

  • D P Moore‎ et al.
  • The Journal of cell biology‎
  • 1998‎

The Drosophila MEI-S332 protein has been shown to be required for the maintenance of sister-chromatid cohesion in male and female meiosis. The protein localizes to the centromeres during male meiosis when the sister chromatids are attached, and it is no longer detectable after they separate. Drosophila melanogaster male meiosis is atypical in several respects, making it important to define MEI-S332 behavior during female meiosis, which better typifies meiosis in eukaryotes. We find that MEI-S332 localizes to the centromeres of prometaphase I chromosomes in oocytes, remaining there until it is delocalized at anaphase II. By using oocytes we were able to obtain sufficient material to investigate the fate of MEI-S332 after the metaphase II-anaphase II transition. The levels of MEI-S332 protein are unchanged after the completion of meiosis, even when translation is blocked, suggesting that the protein dissociates from the centromeres but is not degraded at the onset of anaphase II. Unexpectedly, MEI-S332 is present during embryogenesis, localizes onto the centromeres of mitotic chromosomes, and is delocalized from anaphase chromosomes. Thus, MEI-S332 associates with the centromeres of both meiotic and mitotic chromosomes and dissociates from them at anaphase.


Lagging X chromatids specify the orientation of asymmetric organelle partitioning in XX spermatocytes of Auanema rhodensis.

  • Talal Al-Yazeedi‎ et al.
  • Genetics‎
  • 2022‎

The unequal partitioning of molecules and organelles during cell division results in daughter cells with different fates. An extreme example is female meiosis, in which consecutive asymmetric cell divisions give rise to 1 large oocyte and 2 small polar bodies with DNA and minimal cytoplasm. Here, we test the hypothesis that during an asymmetric cell division during spermatogenesis of the nematode Auanema rhodensis, the late segregating X chromatids orient the asymmetric partitioning of cytoplasmic components. In previous studies, the secondary spermatocytes of wild-type XO males were found to divide asymmetrically to generate functional spermatids that inherit components necessary for sperm viability and DNA-containing residual bodies that inherit components to be discarded. Here we extend that analysis to 2 novel contexts. First, the isolation and analysis of a strain of mutant XX pseudomales revealed that such animals have highly variable patterns of X-chromatid segregation. The pattern of late segregating X chromatids nevertheless predicted the orientation of organelle partitioning. Second, while wild-type XX hermaphrodites were known to produce both 1X and 2X sperm, here, we show that spermatocytes within specific spermatogonial clusters exhibit 2 different patterns of X-chromatid segregation that correlate with distinct patterns of organelle partitioning. Together this analysis suggests that A. rhodensis has coopted lagging X chromosomes during anaphase II as a mechanism for determining the orientation of organelle partitioning.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: