Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 114 papers

The RNase PARN-1 Trims piRNA 3' Ends to Promote Transcriptome Surveillance in C. elegans.

  • Wen Tang‎ et al.
  • Cell‎
  • 2016‎

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and are essential for fertility in diverse organisms. An interesting feature of piRNAs is that, while piRNA lengths are stereotypical within a species, they can differ widely between species. For example, piRNAs are mainly 29 and 30 nucleotides in humans, 24 to 30 nucleotides in D. melanogaster, and uniformly 21 nucleotides in C. elegans. However, how piRNA length is determined and whether length impacts function remains unknown. Here, we show that C. elegans deficient for PARN-1, a conserved RNase, accumulate untrimmed piRNAs with 3' extensions. Surprisingly, these longer piRNAs are stable and associate with the Piwi protein PRG-1 but fail to robustly recruit downstream silencing factors. Our findings identify PARN-1 as a key regulator of piRNA length in C. elegans and suggest that length is regulated to promote efficient transcriptome surveillance.


Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.

  • Wen Tang‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

Owing to dopamine's excellent adhesion ability and easy modification, it has been widely applied for enzyme immobilization, while the high cost of dopamine and low activity recovery of immobilized enzyme highly impede large-scale application of immobilized enzyme. We herein developed a low-cost and ideal activity recovery enzyme immobilization strategy based on magnetic nanoparticles by replacing dopamine with cheap Catechol/tetraethylene pentamine (CPA) binary system and introducing spacer-arms. In brief, CPA was first polymerized and deposited on the surface of magnetic nanoparticles with a modified mussel-inspired method, and the generated poly(CPA) layer was further functionalized with ethylene glycol diglycidyl ether (EGDE) molecules as spacer-arms for enzyme immobilization. Subsequently, lipases as model enzymes were firmly immobilized on the surface of such amino-epoxy functionalized magnetic materials through ion exchange and covalent attachment with 180.6 mg/g support of loading capacity and 69.2% of activity recovery under the optimized conditions. Furthermore, the immobilized lipase exhibited the improved tolerance rang of pH, temperature and storage stability as well as excellent reusability. Most strikingly, the theoretical simulation and secondary structure analysis of immobilized lipase revealed that the biocompatible microenvironment and flexible tethering at interface could effectively improve performance of the immobilized enzyme and stability. Thus, this novel immobilized enzyme strategy will open up a new perspective for the development of enzyme immobilization and lower the cost of immobilized enzyme in large-scale industrial application.


Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells.

  • Simone Lieb‎ et al.
  • eLife‎
  • 2019‎

Targeted cancer therapy is based on exploiting selective dependencies of tumor cells. By leveraging recent functional screening data of cancer cell lines we identify Werner syndrome helicase (WRN) as a novel specific vulnerability of microsatellite instability-high (MSI-H) cancer cells. MSI, caused by defective mismatch repair (MMR), occurs frequently in colorectal, endometrial and gastric cancers. We demonstrate that WRN inactivation selectively impairs the viability of MSI-H but not microsatellite stable (MSS) colorectal and endometrial cancer cell lines. In MSI-H cells, WRN loss results in severe genome integrity defects. ATP-binding deficient variants of WRN fail to rescue the viability phenotype of WRN-depleted MSI-H cancer cells. Reconstitution and depletion studies indicate that WRN dependence is not attributable to acute loss of MMR gene function but might arise during sustained MMR-deficiency. Our study suggests that pharmacological inhibition of WRN helicase function represents an opportunity to develop a novel targeted therapy for MSI-H cancers.


Relaxation of the one child policy and trends in caesarean section rates and birth outcomes in China between 2012 and 2016: observational study of nearly seven million health facility births.

  • Juan Liang‎ et al.
  • BMJ (Clinical research ed.)‎
  • 2018‎

To examine how the relaxation of the one child policy and policies to reduce caesarean section rates might have affected trends over time in caesarean section rates and perinatal and pregnancy related mortality in China.


Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1.

  • Bettina A Buschhorn‎ et al.
  • Nature structural & molecular biology‎
  • 2011‎

The anaphase-promoting complex/cyclosome (APC/C) is a 22S ubiquitin ligase complex that initiates chromosome segregation and mitotic exit. We have used biochemical and electron microscopic analyses of Saccharomyces cerevisiae and human APC/C to address how the APC/C subunit Doc1 contributes to recruitment and processive ubiquitylation of APC/C substrates, and to understand how APC/C monomers interact to form a 36S dimeric form. We show that Doc1 interacts with Cdc27, Cdc16 and Apc1 and is located in the vicinity of the cullin-RING module Apc2-Apc11 in the inner cavity of the APC/C. Substrate proteins also bind in the inner cavity, in close proximity to Doc1 and the coactivator Cdh1, and induce conformational changes in Apc2-Apc11. Our results suggest that substrates are recruited to the APC/C by binding to a bipartite substrate receptor composed of a coactivator protein and Doc1.


A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.

  • Johanna Gassler‎ et al.
  • The EMBO journal‎
  • 2017‎

Fertilization triggers assembly of higher-order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single-nucleus Hi-C (snHi-C), but not bulk Hi-C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin-dependent loop extrusion generates higher-order chromatin structures within the one-cell embryo. Using snHi-C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1-cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi-C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin-dependent loop extrusion organizes mammalian genomes over multiple scales from the one-cell embryo onward.


Dynamics of sister chromatid resolution during cell cycle progression.

  • Rugile Stanyte‎ et al.
  • The Journal of cell biology‎
  • 2018‎

Faithful genome transmission in dividing cells requires that the two copies of each chromosome's DNA package into separate but physically linked sister chromatids. The linkage between sister chromatids is mediated by cohesin, yet where sister chromatids are linked and how they resolve during cell cycle progression has remained unclear. In this study, we investigated sister chromatid organization in live human cells using dCas9-mEGFP labeling of endogenous genomic loci. We detected substantial sister locus separation during G2 phase irrespective of the proximity to cohesin enrichment sites. Almost all sister loci separated within a few hours after their respective replication and then rapidly equilibrated their average distances within dynamic chromatin polymers. Our findings explain why the topology of sister chromatid resolution in G2 largely reflects the DNA replication program. Furthermore, these data suggest that cohesin enrichment sites are not persistent cohesive sites in human cells. Rather, cohesion might occur at variable genomic positions within the cell population.


The Coding Regions of Germline mRNAs Confer Sensitivity to Argonaute Regulation in C. elegans.

  • Meetu Seth‎ et al.
  • Cell reports‎
  • 2018‎

Protein-coding genes undergo a wide array of regulatory interactions with factors that engage non-coding regions. Open reading frames (ORFs), in contrast, are thought to be constrained by coding function, precluding a major role in gene regulation. Here, we explore Piwi-interacting (pi)RNA-mediated transgene silencing in C. elegans and show that marked differences in the sensitivity to piRNA silencing map to the endogenous sequences within transgene ORFs. Artificially increasing piRNA targeting within the ORF of a resistant transgene can lead to a partial yet stable reduction in expression, revealing that piRNAs not only silence but can also "tune" gene expression. Our findings support a model that involves a temporal element to mRNA regulation by germline Argonautes, likely prior to translation, and suggest that piRNAs afford incremental control of germline mRNA expression by targeting the body of the mRNA, including the coding region.


Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.

  • Georg A Busslinger‎ et al.
  • Nature‎
  • 2017‎

Mammalian genomes are spatially organized by CCCTC-binding factor (CTCF) and cohesin into chromatin loops and topologically associated domains, which have important roles in gene regulation and recombination. By binding to specific sequences, CTCF defines contact points for cohesin-mediated long-range chromosomal cis-interactions. Cohesin is also present at these sites, but has been proposed to be loaded onto DNA elsewhere and to extrude chromatin loops until it encounters CTCF bound to DNA. How cohesin is recruited to CTCF sites, according to this or other models, is unknown. Here we show that the distribution of cohesin in the mouse genome depends on transcription, CTCF and the cohesin release factor Wings apart-like (Wapl). In CTCF-depleted fibroblasts, cohesin cannot be properly recruited to CTCF sites but instead accumulates at transcription start sites of active genes, where the cohesin-loading complex is located. In the absence of both CTCF and Wapl, cohesin accumulates in up to 70 kilobase-long regions at 3'-ends of active genes, in particular if these converge on each other. Changing gene expression modulates the position of these 'cohesin islands'. These findings indicate that transcription can relocate mammalian cohesin over long distances on DNA, as previously reported for yeast cohesin, that this translocation contributes to positioning cohesin at CTCF sites, and that active genes can be freed from cohesin either by transcription-mediated translocation or by Wapl-mediated release.


Rapid movement and transcriptional re-localization of human cohesin on DNA.

  • Iain F Davidson‎ et al.
  • The EMBO journal‎
  • 2016‎

The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion.


Genome-wide identification of the fatty acid desaturases gene family in four Aspergillus species and their expression profile in Aspergillus oryzae.

  • Wen Tang‎ et al.
  • AMB Express‎
  • 2018‎

Fatty acid desaturases play a key role in producing polyunsaturated fatty acids by converting single bonds to double bonds. In the present study, a total of 13, 12, 8 and 8 candidate fatty acid desaturases genes were identified in the Aspergillus oryzae, Aspergillus flavus, Aspergillus fumigatus and Aspergillus nidulans genomes through database searches, which were classified into five different subfamilies based on phylogenetic analysis. Furthermore, a comprehensive analysis was performed to characterize conserved motifs and gene structures, which could provide an intuitive comprehension to learn the relationship between structure and functions of the fatty acid desaturases genes in different Aspergillus species. In addition, the expression pattern of 13 fatty acid desaturases genes of A. oryzae was tested in different growth stages and under salt stress treatment. The results revealed that the fatty acid desaturases genes in A. oryzae were highly expressed in adaptive phase growth and up-regulated under salt stress treatment. This study provided a better understanding of the evolution and functions of the fatty acid desaturases gene family in the four Aspergillus species, and would be useful for seeking methods to improve the production of unsaturated fatty acids and enhance efforts for the genetic improvement of strains to adapt to the complex surrounding environment.


PDS5 proteins are required for proper cohesin dynamics and participate in replication fork protection.

  • Carmen Morales‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Cohesin is a chromatin-bound complex that mediates sister chromatid cohesion and facilitates long-range interactions through DNA looping. How the transcription and replication machineries deal with the presence of cohesin on chromatin remains unclear. The dynamic association of cohesin with chromatin depends on WAPL cohesin release factor (WAPL) and on PDS5 cohesin-associated factor (PDS5), which exists in two versions in vertebrate cells, PDS5A and PDS5B. Using genetic deletion in mouse embryo fibroblasts and a combination of CRISPR-mediated gene editing and RNAi-mediated gene silencing in human cells, here we analyzed the consequences of PDS5 depletion for DNA replication. We found that either PDS5A or PDS5B is sufficient for proper cohesin dynamics and that their simultaneous removal increases cohesin's residence time on chromatin and slows down DNA replication. A similar phenotype was observed in WAPL-depleted cells. Cohesin down-regulation restored normal replication fork rates in PDS5-deficient cells, suggesting that chromatin-bound cohesin hinders the advance of the replisome. We further show that PDS5 proteins are required to recruit WRN helicase-interacting protein 1 (WRNIP1), RAD51 recombinase (RAD51), and BRCA2 DNA repair associated (BRCA2) to stalled forks and that in their absence, nascent DNA strands at unprotected forks are degraded by MRE11 homolog double-strand break repair nuclease (MRE11). These findings indicate that PDS5 proteins participate in replication fork protection and also provide insights into how cohesin and its regulators contribute to the response to replication stress, a common feature of cancer cells.


pre-piRNA trimming and 2'-O-methylation protect piRNAs from 3' tailing and degradation in C. elegans.

  • Benjamin Pastore‎ et al.
  • Cell reports‎
  • 2021‎

The Piwi-interacting RNA (piRNA) pathway suppresses transposable elements and promotes fertility in diverse organisms. Maturation of piRNAs involves pre-piRNA trimming followed by 2'-O-methylation at their 3' termini. Here, we report that the 3' termini of Caenorhabditis elegans piRNAs are subject to nontemplated nucleotide addition, and piRNAs with 3' addition exhibit extensive base-pairing interaction with their target RNAs. Animals deficient for PARN-1 (pre-piRNA trimmer) and HENN-1 (2'-O-methyltransferase) accumulate piRNAs with 3' nontemplated nucleotides. In henn-1 mutants, piRNAs are shortened prior to 3' addition, whereas long isoforms of untrimmed piRNAs are preferentially modified in parn-1 mutant animals. Loss of either PARN-1 or HENN-1 results in modest reduction in steady-state levels of piRNAs. Deletion of both enzymes leads to depletion of piRNAs, desilenced piRNA targets, and impaired fecundity. Together, our findings suggest that pre-piRNA trimming and 2'-O-methylation act collaboratively to protect piRNAs from tailing and degradation.


An online nomogram of acute respiratory distress syndrome originating from pulmonary disease.

  • Hanghang Wang‎ et al.
  • European journal of clinical investigation‎
  • 2022‎

Acute respiratory distress syndrome (ARDS) is a highly heterogeneous disease accompanied by high mortality. Our goal was to investigate the risk factors for 28-day mortality and then establish a predictive online nomogram for ARDS originating from pulmonary disease (ARDSp).


Turnip crinkle virus-encoded suppressor of RNA silencing interacts with Arabidopsis SGS3 to enhance virus infection.

  • Linyu Liu‎ et al.
  • Molecular plant pathology‎
  • 2023‎

Most plant viruses encode suppressors of RNA silencing (VSRs) to protect themselves from antiviral RNA silencing in host plants. The capsid protein (CP) of Turnip crinkle virus (TCV) is a well-characterized VSR, whereas SUPPRESSOR OF GENE SILENCING 3 (SGS3) is an important plant-encoded component of the RNA silencing pathways. Whether the VSR activity of TCV CP requires it to engage SGS3 in plant cells has yet to be investigated. Here, we report that TCV CP interacts with SGS3 of Arabidopsis in both yeast and plant cells. The interaction was identified with the yeast two-hybrid system, and corroborated with bimolecular fluorescence complementation and intracellular co-localization assays in Nicotiana benthamiana cells. While multiple partial TCV CP fragments could independently interact with SGS3, its hinge domain connecting the surface and protruding domains appears to be essential for this interaction. Conversely, SGS3 enlists its N-terminal domain and the XS rice gene X and SGS3 (XS) domain as the primary CP-interacting sites. Interestingly, SGS3 appears to stimulate TCV accumulation because viral RNA levels of a TCV mutant with low VSR activities decreased in the sgs3 knockout mutants, but increased in the SGS3-overexpressing transgenic plants. Transgenic Arabidopsis plants overexpressing TCV CP exhibited developmental abnormalities that resembled sgs3 knockout mutants and caused similar defects in the biogenesis of trans-acting small interfering RNAs. Our data suggest that TCV CP interacts with multiple RNA silencing pathway components that include SGS3, as well as previously reported DRB4 (dsRNA-binding protein 4) and AGO2 (ARGONAUTE protein 2), to achieve efficient suppression of RNA silencing-mediated antiviral defence.


A genetic tool for production of GFP-expressing Rhodopseudomonas palustris for visualization of bacterial colonization.

  • Zhongying Zhai‎ et al.
  • AMB Express‎
  • 2019‎

Development of a genetic tool for visualization of photosynthetic bacteria (PSB) is essential for understanding microbial function during their interaction with plant and microflora. In this study, Rhodopseudomonas palustris GJ-22-gfp harboring the vector pBBR1-pckAPT-gfp was constructed using an electroporation transformation method and was used for dynamic tracing of bacteria in plants. The results showed that strain GJ-22-gfp was stable and did not affect the biocontrol function, and the Confocal Laser Scanning Microscopy (CLSM) results indicated it could successfully colonised on the surface of leaf and root of tobacco and rice. In tobacco leaves, cells formed aggregates on the mesophyll epidermal cells. While in rice, no aggregate was found. Instead, the fluorescent cells colonise the longitudinal intercellular spaces between epidermal cells. In addition, the results of strain GJ-22 on the growth promotion and disease resistance of tobacco and rice indicated that the different colonization patterns might be related to the bacteria could induce systemic resistance in tobacco.


Absolute quantification of cohesin, CTCF and their regulators in human cells.

  • Johann Holzmann‎ et al.
  • eLife‎
  • 2019‎

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.


The Diagnostic Value of Plasma miRNA-497, cTnI, FABP3 and GPBB in Pediatric Sepsis Complicated with Myocardial Injury.

  • Chengjiao Huang‎ et al.
  • Therapeutics and clinical risk management‎
  • 2021‎

To investigate the diagnostic value of plasma miRNA-497, cardiac troponin I (cTnI), fatty acid binding protein 3 (FABP3), glycogen phosphorylase isoenzyme BB (GPBB) in pediatric sepsis complicated with myocardial injury.


Clinical outcomes of the severe acute respiratory syndrome coronavirus 2 Omicron and Delta variant: systematic review and meta-analysis of 33 studies covering 6 037 144 coronavirus disease 2019-positive patients.

  • Fei-Hong Hu‎ et al.
  • Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases‎
  • 2023‎

Although the SARS-CoV-2 Omicron variant is considered to induce less severe disease, there have been no consistent results on the extent of the decrease in severity.


Longitudinal association between dietary protein intake and survival in peritoneal dialysis patients.

  • Shu-Hong Bi‎ et al.
  • Renal failure‎
  • 2023‎

Decreased dietary protein intake (DPI) may lead to protein-energy malnutrition and may be associated with increased mortality risk. We hypothesized that longitudinal changes in dietary protein intake have independent associations with survival in peritoneal dialysis (PD) patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: