Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

A 3D cellular context for the macromolecular world.

  • Ardan Patwardhan‎ et al.
  • Nature structural & molecular biology‎
  • 2014‎

We report the outcomes of the discussion initiated at the workshop entitled A 3D Cellular Context for the Macromolecular World and propose how data from emerging three-dimensional (3D) cellular imaging techniques—such as electron tomography, 3D scanning electron microscopy and soft X-ray tomography—should be archived, curated, validated and disseminated, to enable their interpretation and reuse by the biomedical community.


The role of structural bioinformatics resources in the era of integrative structural biology.

  • Aleksandras Gutmanas‎ et al.
  • Acta crystallographica. Section D, Biological crystallography‎
  • 2013‎

The history and the current state of the PDB and EMDB archives is briefly described, as well as some of the challenges that they face. It seems natural that the role of structural biology archives will change from being a pure repository of historic data into becoming an indispensable resource for the wider biomedical community. As part of this transformation, it will be necessary to validate the biomacromolecular structure data and ensure the highest possible quality for the archive holdings, to combine structural data from different spatial scales into a unified resource and to integrate structural data with functional, genetic and taxonomic data as well as other information available in bioinformatics resources. Some recent developments and plans to address these challenges at PDBe are presented.


EMDataBank unified data resource for 3DEM.

  • Catherine L Lawson‎ et al.
  • Nucleic acids research‎
  • 2016‎

Three-dimensional Electron Microscopy (3DEM) has become a key experimental method in structural biology for a broad spectrum of biological specimens from molecules to cells. The EMDataBank project provides a unified portal for deposition, retrieval and analysis of 3DEM density maps, atomic models and associated metadata (emdatabank.org). We provide here an overview of the rapidly growing 3DEM structural data archives, which include maps in EM Data Bank and map-derived models in the Protein Data Bank. In addition, we describe progress and approaches toward development of validation protocols and methods, working with the scientific community, in order to create a validation pipeline for 3DEM data.


Atomic resolution insights into curli fiber biogenesis.

  • Jonathan D Taylor‎ et al.
  • Structure (London, England : 1993)‎
  • 2011‎

Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis.


Structural biology data archiving - where we are and what lies ahead.

  • Gerard J Kleywegt‎ et al.
  • FEBS letters‎
  • 2018‎

For almost 50 years, structural biology has endeavoured to conserve and share its experimental data and their interpretations (usually, atomistic models) through global public archives such as the Protein Data Bank, Electron Microscopy Data Bank and Biological Magnetic Resonance Data Bank (BMRB). These archives are treasure troves of freely accessible data that document our quest for molecular or atomic understanding of biological function and processes in health and disease. They have prepared the field to tackle new archiving challenges as more and more (combinations of) techniques are being utilized to elucidate structure at ever increasing length scales. Furthermore, the field has made substantial efforts to develop validation methods that help users to assess the reliability of structures and to identify the most appropriate data for their needs. In this Review, we present an overview of public data archives in structural biology and discuss the importance of validation for users and producers of structural data. Finally, we sketch our efforts to integrate structural data with bioimaging data and with other sources of biological data. This will make relevant structural information available and more easily discoverable for a wide range of scientists.


Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge.

  • Catherine L Lawson‎ et al.
  • Nature methods‎
  • 2021‎

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Data-deposition protocols for correlative soft X-ray tomography and super-resolution structured illumination microscopy applications.

  • Andrii Iudin‎ et al.
  • STAR protocols‎
  • 2021‎

This protocol illustrates the steps necessary to deposit correlated 3D cryo-imaging data from cryo-structured illumination microscopy and cryo-soft X-ray tomography with the BioStudies and EMPIAR deposition databases of the European Bioinformatics Institute. There is currently a real need for a robust method of data deposition to ensure unhindered access to and independent validation of correlative light and X-ray microscopy data to allow use in further comparative studies, educational activities, and data mining. For complete details on the use and execution of this protocol, please refer to Kounatidis et al. (2020).


Volume EM: a quiet revolution takes shape.

  • Lucy M Collinson‎ et al.
  • Nature methods‎
  • 2023‎

Volume Electron Microscopy is a group of techniques that reveal the 3D ultrastructure of cells and tissues through volumes greater than 1 cubic micron. A burgeoning grass roots community effort is fast building the profile, and revealing the impact, of vEM technology in the life sciences and clinical research.


Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase.

  • Alessandro Costa‎ et al.
  • The EMBO journal‎
  • 2008‎

The eukaryotic MCM2-7 complex is recruited at origins of replication during the G1 phase and acts as the main helicase at the replication fork during the S phase of the cell cycle. To characterize the interplay between the MCM helicase and DNA prior to the melting of the double helix, we determined the structure of an archaeal MCM orthologue bound to a 5.6-kb double-stranded DNA segment, using cryo-electron microscopy. DNA wraps around the N-terminal face of a single hexameric ring. This interaction requires a conformational change within the outer belt of the MCM N-terminal domain, exposing a previously unrecognized helix-turn-helix DNA-binding motif. Our findings provide novel insights into the role of the MCM complex during the initiation step of DNA replication.


Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop.

  • Andrej Sali‎ et al.
  • Structure (London, England : 1993)‎
  • 2015‎

Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?


Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB.

  • Ingvar Lagerstedt‎ et al.
  • Journal of structural biology‎
  • 2013‎

The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.


New software for statistical analysis of Cambridge Structural Database data.

  • Richard A Sykes‎ et al.
  • Journal of applied crystallography‎
  • 2011‎

A collection of new software tools is presented for the analysis of geometrical, chemical and crystallographic data from the Cambridge Structural Database (CSD). This software supersedes the program Vista. The new functionality is integrated into the program Mercury in order to provide statistical, charting and plotting options alongside three-dimensional structural visualization and analysis. The integration also permits immediate access to other information about specific CSD entries through the Mercury framework, a common requirement in CSD data analyses. In addition, the new software includes a range of more advanced features focused towards structural analysis such as principal components analysis, cone-angle correction in hydrogen-bond analyses and the ability to deal with topological symmetry that may be exhibited in molecular search fragments.


Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data.

  • Jasmine Y Young‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2018‎

https://www.wwpdb.org/.


Trends in the Electron Microscopy Data Bank (EMDB).

  • Ardan Patwardhan‎
  • Acta crystallographica. Section D, Structural biology‎
  • 2017‎

Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.


New insights into the GINS complex explain the controversy between existing structural models.

  • Marta Carroni‎ et al.
  • Scientific reports‎
  • 2017‎

GINS is a key component of eukaryotic replicative forks and is composed of four subunits (Sld5, Psf1, Psf2, Psf3). To explain the discrepancy between structural data from crystallography and electron microscopy (EM), we show that GINS is a compact tetramer in solution as observed in crystal structures, but also forms a double-tetrameric population, detectable by EM. This may represent an intermediate step towards the assembly of two replicative helicase complexes at origins, moving in opposite directions within the replication bubble. Reconstruction of the double-tetrameric form, combined with small-angle X-ray scattering data, allows the localisation of the B domain of the Psf1 subunit in the free GINS complex, which was not visible in previous studies and is essential for the formation of a functional replication fork.


PDBe: improved accessibility of macromolecular structure data from PDB and EMDB.

  • Sameer Velankar‎ et al.
  • Nucleic acids research‎
  • 2016‎

The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the 'best structures' for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data.


A call for public archives for biological image data.

  • Jan Ellenberg‎ et al.
  • Nature methods‎
  • 2018‎

Public data archives are the backbone of modern biological research. Biomolecular archives are well established, but bioimaging resources lag behind them. The technology required for imaging archives is now available, thus enabling the creation of the first public bioimage datasets. We present the rationale for the construction of bioimage archives and their associated databases to underpin the next revolution in bioinformatics discovery.


Building bridges between cellular and molecular structural biology.

  • Ardan Patwardhan‎ et al.
  • eLife‎
  • 2017‎

The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.


Announcing the launch of Protein Data Bank China as an Associate Member of the Worldwide Protein Data Bank Partnership.

  • Wenqing Xu‎ et al.
  • Acta crystallographica. Section D, Structural biology‎
  • 2023‎

The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) partners welcomed Protein Data Bank China (PDBc; https://www.pdbc.org.cn) to the organization as an Associate Member. PDBc is based in the National Facility for Protein Science in Shanghai which is associated with the Shanghai Advanced Research Institute of Chinese Academy of Sciences, the Shanghai Institute for Advanced Immunochemical Studies and the iHuman Institute of ShanghaiTech University. This letter describes the history of the wwPDB, recently established mechanisms for adding new wwPDB data centers and the processes developed to bring PDBc into the partnership.


EMPIAR: the Electron Microscopy Public Image Archive.

  • Andrii Iudin‎ et al.
  • Nucleic acids research‎
  • 2023‎

Public archiving in structural biology is well established with the Protein Data Bank (PDB; wwPDB.org) catering for atomic models and the Electron Microscopy Data Bank (EMDB; emdb-empiar.org) for 3D reconstructions from cryo-EM experiments. Even before the recent rapid growth in cryo-EM, there was an expressed community need for a public archive of image data from cryo-EM experiments for validation, software development, testing and training. Concomitantly, the proliferation of 3D imaging techniques for cells, tissues and organisms using volume EM (vEM) and X-ray tomography (XT) led to calls from these communities to publicly archive such data as well. EMPIAR (empiar.org) was developed as a public archive for raw cryo-EM image data and for 3D reconstructions from vEM and XT experiments and now comprises over a thousand entries totalling over 2 petabytes of data. EMPIAR resources include a deposition system, entry pages, facilities to search, visualize and download datasets, and a REST API for programmatic access to entry metadata. The success of EMPIAR also poses significant challenges for the future in dealing with the very fast growth in the volume of data and in enhancing its reusability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: