2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 791 results
Snippet view Table view Download
Click the to add this resource to a Collection

http://knightadrc.wustl.edu/

The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) supports researchers and our surrounding community in their pursuit of answers that will lead to improved diagnosis and care for persons with Alzheimer disease (AD). The Center is committed to the long-term goal of finding a way to effectively treat and prevent AD. The Knight ADRC facilitates advanced research on the clinical, genetic, neuropathological, neuroanatomical, biomedical, psychosocial, and neuropsychological aspects of Alzheimer disease, as well as other related brain disorders.

Proper citation: Washington University School of Medicine Knight Alzheimers Disease Research Center (RRID:SCR_000210) Copy   


http://knhi.de/en/network/

Association of physicians, scientists, academics, research institutes and self-help groups that provides and nurtures interdisciplinary cooperation between research and primary, secondary and tertiary health care. Many internationally renowned heart failure researchers and working groups live and work in Germany. Nevertheless, there is insufficient cooperation of the respective working groups and research projects in this area. In order to remain internationally competitive in the heart failure research community, excellent implementation of large scale clinical and genetic trials is indispensable. Further, deficits in the effective presentation and transfer of research findings into clinical practice need to be addressed. An adequate translation of guidelines into practical, tangible instructions can facilitate clinical practice both in primary and tertiary care fundamentally. The need for action to address the research-practice-gap is obvious.

Proper citation: Competence Network Heart Failure (RRID:SCR_004979) Copy   


  • RRID:SCR_005565

    This resource has 10+ mentions.

http://www.ncbi.nlm.nih.gov/gtr/

Central location for voluntary submission of genetic test information by providers including the test''s purpose, methodology, validity, evidence of the test''s usefulness, and laboratory contacts and credentials. GTR aims to advance the public health and research into the genetic basis of health and disease. GTR is accepting registration of clinical tests for Mendelian disorders, complex tests and arrays, and pharmacogenetic tests. These tests may include multiple methods and may include multiple major method categories such as biochemical, cytogenetic, and molecular tests. GTR is not currently accepting registration of tests for somatic disorders, research tests or direct-to-consumer tests.

Proper citation: Genetic Testing Registry (RRID:SCR_005565) Copy   


  • RRID:SCR_006179

    This resource has 1+ mentions.

http://www.biomedbridges.eu/

Consortium of 12 Biomedical sciences research infrastructure (BMS RI) partners to develop a shared e-infrastructure to allow interoperability between data and services in the biological, medical, translational and clinical domains (providing a complex knowledge environment comprising standards, ontologies, data and services) and thus strengthen biomedical resources in Europe. The BMS RIs are on the roadmap of the European Strategy Forum on Research Infrastructures (ESFRI). Connecting several European research infrastructures brings a diversity of ethical, legal and security concerns including data security requirements for participating e-Infrastructures that are storing or processing patient-related data (or biosamples): EATRIS, ECRIN, BBMRI, EuroBioImaging and EMBL-EBI. In addition, INSTRUCT is interested in secure sample transport and in intellectual property rights; Infrafrontier stores high-throughput data from mice. BBMRI with its focus on the availability of biomaterials is currently emphasizing aspects like k-anonymity and metadata management for its data. Sharing of imaging data by Euro-BioImaging poses challenges with respect to anonymisation and intellectual property. Therefore, an ethical, regulatory and security framework for international data sharing that covers these diverse areas and different types of data (e.g. clinical trials data, mouse data, and human genotype and DNA sequence data) is of crucial importance. The outcomes will lead to real and sustained improvement in the services the biomedical sciences research infrastructures offer to the research community. Data curation and sample description will be improved by the adoption of best practices and agreed standards. Many improvements will emerge from new interactions between RIs created by data linkage and networking. Ensuring access to relevant information for all life science researchers across all BMS RIs will enable scientists to conduct and share cutting-edge research.

Proper citation: BioMedBridges (RRID:SCR_006179) Copy   


https://bdsc.indiana.edu/

Collects, maintains and distributes Drosophila melanogaster strains for research. Emphasis is placed on genetic tools that are useful to a broad range of investigations. These include basic stocks of flies used in genetic analysis such as marker, balancer, mapping, and transposon-tagging strains; mutant alleles of identified genes, including a large set of transposable element insertion alleles; defined sets of deficiencies and a variety of other chromosomal aberrations; engineered lines for somatic and germline clonal analysis; GAL4 and UAS lines for targeted gene expression; enhancer trap and lacZ-reporter strains with defined expression patterns for marking tissues; and a collection of transposon-induced lethal mutations.

Proper citation: Bloomington Drosophila Stock Center (RRID:SCR_006457) Copy   


http://scicrunch.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.

Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)

Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy   


  • RRID:SCR_007147

    This resource has 1+ mentions.

http://www.nervenet.org/main/dictionary.html

A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.

Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy   


  • RRID:SCR_007079

    This resource has 1+ mentions.

http://www.genoscope.cns.fr/externe/tetraodon/

The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.

Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy   


  • RRID:SCR_003767

    This resource has 1+ mentions.

http://www.oncotrack.eu/

An international consortium to develop and assess novel approaches to identify and characterize biological markers for colon cancer that will deepen the understanding of the variable make-up of tumors and how this affects the way patients respond to treatment. They will use cutting edge laboratory-based genome sequencing techniques coupled to novel computer modelling approaches to study both the biological heterogeneity of colon cancers (i.e. patient to patient variability) as well as tumor variation within the patient for example, by comparing primary tumors with metastases. This five year project brings together top scientists from European academic institutions offering a wide range of expertise, and partners them with pharmaceutical companies. The project is based on the premise that this genetic and epigenetic information, combined with a description of the molecular pathology of the tumor, will allow OncoTrack to generate a more accurate in-silico model of the cancer cell. This will facilitate the identification of predictive markers that can be used to guide the optimal therapy strategy at the level of the individual patient - and will also provide on-going prognostic guidance for the clinician. This project will not only advance understanding of the fundamental biology of colon cancers but will provide the means and approach for the identification of previously undetected biomarkers not only in the cancer under study, but potentially also in other solid cancers and, in doing so, open the door for personalized management of the oncology patient.

Proper citation: OncoTrack (RRID:SCR_003767) Copy   


  • RRID:SCR_003827

http://www.europeanlung.org/en/projects-and-research/projects/airprom/

Consortium focused on developing computer and physical models of the airway system for patients with asthma and chronic obstructive pulmonary disease (COPD). Developing accurate models will better predict how asthma and COPD develop, since current methods can only assess the severity of disease. They aim to bridge the gaps in clinical management of airways-based disease by providing reliable models that predict disease progression and the response to treatment for each person with asthma or COPD. A data management platform provides a secure and sustainable infrastructure that semantically integrates the clinical, physiological, genetic, and experimental data produced with existing biomedical knowledge from allied consortia and public databases. This resource will be available for analysis and modeling, and will facilitate sharing, collaboration and publication within AirPROM and with the broader community. Currently the AirPROM knowledge portal is only accessible by AirPROM partners.

Proper citation: AirPROM (RRID:SCR_003827) Copy   


  • RRID:SCR_003721

http://www.themmrf.org/research-programs/commpass-study/

A personalized medicine initiative to discover biomarkers that can better define the biological basis of multiple myeloma to help stratify patients. This effort hopes to obtain samples from approximately 1,000 multiple myeloma patients and follow them over time to identify how a patient's genetic profile is related to clinical progression and treatment response. As a partnership between 17 academic centers, 5 pharmaceuticals and the Department of Veterans Affairs, the goal of this eight year study is to create a database that can accelerate future clinical trials and personalized treatment strategies. MMRF's CoMMpass Study has the following goals: * Create a guide to which treatments work best for specific patient subgroups. * Share data with researchers to accelerate drug development for specific subtypes of multiple myeloma patients. In order to facilitate discoveries and development related to targeted therapies, the comprehensive data from CoMMpass is placed in an open-access research portal. The data will be part of the Multiple Myeloma Research Foundation's (MMRF) Personalized Medicine Platform combines CoMMpass data with those collected from MMRF's Genomics Initiative. It is hoped that the longitudinal data, combined with the annotated bio-specimens will help provide insights that can accelerate personalized therapies.

Proper citation: MMRF CoMMpass Study (RRID:SCR_003721) Copy   


  • RRID:SCR_003834

    This resource has 1+ mentions.

http://betabat.ulb.ac.be/

Project that aims to develop new treatment strategies based on knowledge of cellular dysfunction in diabetes. They will perform a detailed organelle diagnosis based on both focused and systems biology approaches, which will provide the scientific rationale for the design of specific interventions to boost the capacity of beta cells and brown adipocytes to regain homeostatic control. They propose that only by understanding the complex molecular mechanisms triggering cellular dysfunction in diabetes, and by integrating this knowledge at the systems level, will it be possible to develop interventional therapies that protect and restore beta cell and (Brown adipose tissue) BAT function. The ultimate goal is to offer individual therapeutic choices based on both genetic information and organelle diagnosis.

Proper citation: BetaBat (RRID:SCR_003834) Copy   


http://www.transformproject.eu/portfolio-item/d6-2-clinical-research-information-model/

A clinical research information model for the integration of clinical research covering randomized clinical trials (RCT), case-control studies and database searches into the TRANSFoRm application development. TRANSFoRm clinical research is based on primary care data, clinical data and genetic data stored in databases and electronic health records and employs the principle of reusing primary care data, adapting data collection by patient reported outcomes (PRO) and eSource based Case Report Forms. CRIM was developed using the TRANSFoRm clinical use cases of GORD and Diabetes. Their use case driven approach consisted of three levels of modelling drawing heavily on the clinical research workflow of the use cases. Different available information models were evaluated for their usefulness to represent TRANSFoRm clinical research, including for example CTOM of caBIG, Primary Care Research Object Model (PRCOM) of ePCRN and BRIDG of CDISC. The PCROM model turned out to be the most suitable and it was possible to extend and modify this model with only 12 new information objects, 3 episode of care related objects and 2 areas to satisfy all requirements of the TRANSFoRm research use cases. Now the information model covers Good Clinical Practice (GCP) compliant research, as well as case control studies and database search studies, including the interaction between patient and GP (family doctor) during patient consultation, appointment, screening, patient recruitment and adverse event reporting.

Proper citation: TRANSFoRm Clinical Research Information Model (RRID:SCR_003889) Copy   


  • RRID:SCR_001251

    This resource has 10+ mentions.

http://www.bioconductor.org/packages/release/bioc/html/CGEN.html

An R package for analysis of case-control studies in genetic epidemiology.

Proper citation: CGEN (RRID:SCR_001251) Copy   


  • RRID:SCR_001378

    This resource has 1+ mentions.

http://www.morpholinodatabase.org/

Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.

Proper citation: Morpholino Database (RRID:SCR_001378) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001587

http://neuronalarchitects.com/ibiofind.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.

Proper citation: iBIOFind (RRID:SCR_001587) Copy   


http://www.norcomm.org/index.htm

Large-scale research initiative focused on developing and distributing a library of mouse embryonic stem (ES) cell lines carrying single gene trapped or targeted mutations across the mouse genome. NorCOMM's large and growing archive of ES cells is publicly available on a cost-recovery basis from the Canadian Mouse Mutant Repository. As an international public resource, access to clones is unrestricted and nonexclusive. Through NorCOMM's affiliation with the Canadian Mouse Consortium (CMC), NorCOMM also provides clients with a single point of access to regional mouse derivation, phenotyping, genetic and archiving services across Canada. These value-added services can help your company harness NorCOMM's resources for drug discovery, target discovery and preclinical validation.

Proper citation: North American Conditional Mouse Mutagenesis Project (RRID:SCR_001614) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X