Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia.

  • Kazuya Kashiyama‎ et al.
  • American journal of human genetics‎
  • 2013‎

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


Deep intronic founder mutations identified in the ERCC4/XPF gene are potential therapeutic targets for a high-frequency form of xeroderma pigmentosum.

  • Chikako Senju‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Xeroderma pigmentosum (XP) is a genodermatosis defined by cutaneous photosensitivity with an increased risk of skin tumors because of DNA repair deficiency. The worldwide prevalence of XP is ~1 to 4 in million, with higher incidence in some countries and regions including Japan (1 in 22,000) and North Africa due to founder mutations and a high degree of consanguinity. Among XP, the complementation group F (XP-F), is a rare form (1% of worldwide XP); however, this is underdiagnosed, because the ERCC4/XPF gene is essential for fetal development and most of previously reported ERCC4/XPF pathogenic variants are hypomorphs causing relatively mild phenotypes. From the largest Japanese XP cohort study, we report 17 XP-F cases bearing two pathogenic variants, both identified in deep intronic regions of the ERCC4/XPF gene. The first variant, located in intron 1, is a Japanese founder mutation, which additionally accounts for ~10% of the entire Japanese XP cases (MAF = 0.00196), causing an aberrant pre-mRNA splicing due to a miss-binding of U1snRNA. The second mutation located in intron eight induces an alternative polyadenylation. Both mutations cause a reduction of the ERCC4/XPF gene expression, resulting in XP clinical manifestations. Most cases developed early-onset skin cancers, indicating that these variants need critical attention. We further demonstrate that antisense oligonucleotides designed for the mutations can restore the XPF protein expression and DNA repair capacity in the patients' cells. Collectively, these pathogenic variants can be potential therapeutic targets for XP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: