Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 110 papers

Xeroderma pigmentosum complementation group C protein (XPC) serves as a general sensor of damaged DNA.

  • Steven M Shell‎ et al.
  • DNA repair‎
  • 2013‎

The Xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results suggest XPC may act as a general sensor of damaged DNA that is capable of recognizing DNA containing lesions not repaired by NER.


Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair.

  • Yuliya S Krasikova‎ et al.
  • Nucleic acids research‎
  • 2010‎

The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA-protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5'-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5'-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5'-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.


SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair.

  • Masaki Akita‎ et al.
  • Scientific reports‎
  • 2015‎

The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER.


Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair.

  • K Sugasawa‎ et al.
  • Molecular cell‎
  • 1998‎

The XPC-HR23B complex is specifically involved in global genome but not transcription-coupled nucleotide excision repair (NER). Its function is unknown. Using a novel DNA damage recognition-competition assay, we identified XPC-HR23B as the earliest damage detector to initiate NER: it acts before the known damage-binding protein XPA. Coimmunoprecipitation and DNase I footprinting show that XPC-HR23B binds to a variety of NER lesions. These results resolve the function of XPC-HR23B, define the first NER stages, and suggest a two-step mechanism of damage recognition involving damage detection by XPC-HR23B followed by damage verification by XPA. This provides a plausible explanation for the extreme damage specificity exhibited by global genome repair. In analogy, in the transcription-coupled NER subpathway, RNA polymerase II may take the role of XPC. After this subpathway-specific initial lesion detection, XPA may function as a common damage verifier and adaptor to the core of the NER apparatus.


Novel germline ERCC5 mutations identified in a xeroderma pigmentosum complementation group G pedigree.

  • Tao Wang‎ et al.
  • JAAD case reports‎
  • 2015‎

No abstract available


Ubiquitylation-independent degradation of Xeroderma pigmentosum group C protein is required for efficient nucleotide excision repair.

  • Qi-En Wang‎ et al.
  • Nucleic acids research‎
  • 2007‎

The Xeroderma Pigmentosum group C (XPC) protein is indispensable to global genomic repair (GGR), a subpathway of nucleotide excision repair (NER), and plays an important role in the initial damage recognition. XPC can be modified by both ubiquitin and SUMO in response to UV irradiation of cells. Here, we show that XPC undergoes degradation upon UV irradiation, and this is independent of protein ubiquitylation. The subunits of DDB-Cul4A E3 ligase differentially regulate UV-induced XPC degradation, e.g DDB2 is required and promotes, whereas DDB1 and Cul4A protect the protein degradation. Mutation of XPC K655 to alanine abolishes both UV-induced XPC modification and degradation. XPC degradation is necessary for recruiting XPG and efficient NER. The overall results provide crucial insights regarding the fate and role of XPC protein in the initiation of excision repair.


Loss of the xeroderma pigmentosum group B protein binding site impairs p210 BCR/ABL1 leukemogenic activity.

  • N L Pannucci‎ et al.
  • Blood cancer journal‎
  • 2013‎

Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB) protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1. Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors.


Xeroderma pigmentosum complementation group F: A rare cause of cerebellar ataxia with chorea.

  • G Carré‎ et al.
  • Journal of the neurological sciences‎
  • 2017‎

The complementation group F of Xeroderma pigmentosum (XP-F) is rare in the Caucasian population, and usually devoid of neurological symptoms. We report two cases, both Caucasian, who exhibited progressive cerebellar ataxia, chorea, a mild subcortical frontal cognitive impairment, and in one case severe polyneuropathy. Brain MRI demonstrated cerebellar (2/2) and cortical (1/2) atrophy. Both patients had only mild sunburn sensitivity and no skin cancer. Mini-exome sequencing approach revealed in ERCC4, two heterozygous mutations, one of which was never described (c.580-584+1delCCAAGG, exon 3), in the first case, and an already reported homozygous mutation, in the second case. These cases emphasize that XP-F is a rare cause of recessive cerebellar ataxia and can in some cases clinically mimic Huntington's disease due to chorea and executive impairment. The association of ataxia, chorea, and sun hypersensitivity are major guidance for the diagnosis, which should not be missed, in order to prevent skin neoplastic complications.


Whole Exome Sequencing of a Patient with a Milder Phenotype of Xeroderma Pigmentosum Group C.

  • Ji-In Seo‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2023‎

A 17-year-old female Korean patient (XP115KO) was previously diagnosed with Xeroderma pigmentosum group C (XPC) by Direct Sanger sequencing, which revealed a homozygous nonsense mutation in the XPC gene (rs121965088: c.1735C > T, p.Arg579Ter). While rs121965088 is associated with a poor prognosis, our patient presented with a milder phenotype. Hence, we conducted whole-exome sequencing in the patient and her family members to detect coexisting mutations that may have resulted in a milder phenotype of rs121965088 through genetic interaction. Materials and Methods: the whole-exome sequencing analysis of samples obtained from the patient and her family members (father, mother, and brother) was performed. To identify the underlying genetic cause of XPC, the extracted DNA was analyzed using Agilent's SureSelect XT Human All Exon v5. The functional effects of the resultant variants were predicted using the SNPinfo web server, and structural changes in the XPC protein using the 3D protein modeling program SWISS-MODEL. Results: Eight biallelic variants, homozygous in the patient and heterozygous in her parents, were detected. Four were found in the XPC gene: one nonsense variant (rs121965088: c.1735C > T, p.Arg579Ter) and three silent variants (rs2227998: c.2061G > A, p. Arg687Arg; rs2279017: c.2251-6A > C, intron; rs2607775: c.-27G > C, 5'UTR). The remaining four variants were found in non-XP genes, including one frameshift variant [rs72452004 of olfactory receptor family 2 subfamily T member 35 (OR2T35)], three missense variants [rs202089462 of ALF transcription elongation factor 3 (AFF3), rs138027161 of TCR gamma alternate reading frame protein (TARP), and rs3750575 of annexin A7 (ANXA7)]. Conclusions: potential candidates for genetic interactions with rs121965088 were found. The rs2279017 and rs2607775 of XPC involved mutations in the intron region, which affected RNA splicing and protein translation. The genetic variants of AFF3, TARP, and ANXA7 are all frameshift or missense mutations, inevitably disturbing the translation and function of the resultant proteins. Further research on their functions in DNA repair pathways may reveal undiscovered cellular relationships within xeroderma pigmentosum.


Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease.

  • A M Sijbers‎ et al.
  • Cell‎
  • 1996‎

Nucleotide excision repair, which is defective in xeroderma pigmentosum (XP), involves incision of a DNA strand on each side of a lesion. We isolated a human gene homologous to yeast Rad1 and found that it corrects the repair defects of XP group F as well as rodent groups 4 and 11. Causative mutations and strongly reduced levels of encoded protein were identified in XP-F patients. The XPF protein was purified from mammalian cells in a tight complex with ERCC1. This complex is a structure-specific endonuclease responsible for the 5' incision during repair. These results demonstrate that the XPF, ERCC4, and ERCC11 genes are equivalent, complete the isolation of the XP genes that form the core nucleotide excision repair system, and solve the catalytic function of the XPF-containing complex.


Effects of Xeroderma pigmentosum group C polymorphism on the likelihood of prostate cancer.

  • Yidan Yan‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2020‎

Numerous studies have assessed the association between xeroderma pigmentosum complementation group C (XPC) polymorphisms and susceptibility of prostate cancer (PCa); however, the findings remain inconsistent.


A novel nonsense mutation of ERCC2 in a Vietnamese family with xeroderma pigmentosum syndrome group D.

  • Chi-Bao Bui‎ et al.
  • Human genome variation‎
  • 2020‎

Xeroderma pigmentosum (XP) group D, a severe disease often typified by extreme sun sensitivity, can be caused by ERCC2 mutations. ERCC2 encodes an adenosine triphosphate (ATP)-dependent DNA helicase, namely XP group D protein (XPD). The XPD, one of ten subunits of the transcription factor TFIIH, plays a critical role in the nucleotide-excision repair (NER) pathway. Mutations in XPD that affect the NER pathway can lead to neurological degeneration and skin cancer, which are the most common causes of death in XP patients. Here, we present detailed phenotypic information on a Vietnamese family in which four members were affected by XP with extreme sun sensitivity. Genomic analysis revealed a compound heterozygous mutation of ERCC2 that affected family members and single heterozygous mutations in unaffected family members. We identified a novel, nonsense mutation in one allele of ERCC2 (c.1354C > T, p.Q452X) and a known missense mutation in the other allele (c.2048G > A, p.R683Q). Fibroblasts isolated from the compound heterozygous subject also failed to recover from UV-driven DNA damage, thus recapitulating aspects of XP syndrome in vitro. We describe a novel ERCC2 variant that leads to the breakdown of the NER pathway across generations of a family presenting with severe XP.


Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein.

  • Syota Matsumoto‎ et al.
  • Nucleic acids research‎
  • 2015‎

In mammalian nucleotide excision repair, the DDB1-DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1-DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.


Conservation of the nucleotide excision repair pathway: characterization of hydra Xeroderma Pigmentosum group F homolog.

  • Apurva Barve‎ et al.
  • PloS one‎
  • 2013‎

Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5' endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra.


Silencing of Xeroderma Pigmentosum Group D Gene Promotes Hepatoma Cell Growth by Reducing P53 Expression.

  • Hao Ding‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND This study investigated the effect of xeroderma pigmentosum group D (XPD) silencing on the growth of hepatoma cells and assessed the mechanisms. MATERIAL AND METHODS XPD gene was silenced by siRNA in hepatoma cells. The experiments were randomly divided into a control group, a liposome control group, a negative control (NC) group, an XPD siRNA group, and an XPD siRNA + P53 inhibitor group. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) was used to detect cell viability 24 h after gene silencing and treatments. Terminal deoxynucleotidyl transferases (TdT)-mediated dUTP nick-end labeling (TUNEL) and flow cytometry were used to detect apoptosis. Invasive ability was detected by Transwell assay. Additionally, the expression of mouse double-minute 2 homolog (Mdm2), mouse double-minute 4 homolog (Mdm4), CyclinD1, P21, Bax, P53, C-sis, and Bcl-2 was detected by real-time polymerase chain reaction and Western blotting. RESULTS Compared with the NC group, XPD siRNA significantly reduced XPD expression at both mRNA and protein levels. XPD siRNA significantly promoted cell proliferation, reduced apoptosis, and promoted cell invasive ability. Expression of CyclinD1, Bcl-2, and C-sis increased significantly after XPD silencing, while the expression of P21, Mdm2, Mdm4, Bax, and P53 significantly decreased (vs. NC, P<0.05). Importantly, P53 inhibitor (1 μM bpV) further enhanced the effect of XPD silencing (vs. XPD silencing, P<0.05). CONCLUSIONS Our data revealed that XPD silencing promoted growth of hepatoma cells by reducing P53 expression.


A nonsense mutation in the Xeroderma pigmentosum complementation group F (XPF) gene is associated with gastric carcinogenesis.

  • Zhong-Hua Wei‎ et al.
  • Gene‎
  • 2014‎

XPF/ERCC1 endonuclease is required for DNA lesion repair. To assess effects of a C2169A nonsense mutation in XPF at position 2169 in gastric cancer tissues and cell lines, genomic DNA was extracted from blood samples of 488 cancer patients and 64 gastric tumors. The mutation was mapped using a TaqMan MGB probe. In addition, gastric cancer cell lines were transfected with mutated XPF to explore XPF/ERCC1 interaction, XPF degradation, and DNA repair by a comet assay. The C2169A mutation was not detected in 488 samples of blood genomic DNA, yet was found in 32 of 64 gastric cancer tissue samples (50.0%), resulting in a 194C-terminal amino acid loss in XPF protein and lower expression. Laser micro-dissection confirmed that this point mutation was not present in surrounding normal tissues from the same patients. The truncated form of XPF (tXPF) impaired interaction with ERCC1, was rapidly degraded via ubiquitination, and resulted in reduced DNA repair. In gastric cancers, the mutation was monoallelic, indicating that XPF is a haplo-insufficient DNA repair gene. As the C2169A mutation is closely associated with gastric carcinogenesis in the Chinese population, our findings shine light on it as a therapeutic target for early diagnosis and treatment of gastric cancer.


Effect of Xeroderma pigmentosum complementation group F polymorphisms and H.pylori infection on the risk of gastric cancer.

  • Li-Li Zhang‎ et al.
  • Pakistan journal of medical sciences‎
  • 2013‎

We conducted a case-control study by genotyping three potential functional SNPs to assess the association of Xeroderma pigmentosum complementation group F (XPF) polymorphisms with gastric cancer susceptibility, and role of XPF polymorphisms in combination with H.pylori infection in the risk of gastric cancer.


Role of Xeroderma Pigmentosum Group D in Cell Cycle and Apoptosis in Cutaneous Squamous Cell Carcinoma A431 Cells.

  • Ou-Gen Liu‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most widespread cancer in humans and its incidence is rising. Novel therapy with better efficacy is needed for clinical treatment of cSCC. Many studies have shown the importance of DNA repair pathways during the development of cancer. A key nucleotide excision repair (NER) protein, xeroderma pigmentosum group D (XPD), is responsible for the excision of a large variety of bulky DNA lesions. MATERIAL AND METHODS To explore the role of XPD in A431 cells, we overexpressed XPD in A431 cells and performed MTT assay, flow cytometry, and Western blot analysis to examine cell proliferation, cell apoptosis, and genes expression. RESULTS We found that the overexpression of XPD suppressed cell viability, induced cell cycle arrest at G1 phase, and promoted cell apoptosis. Additionally, XPD blocked the expression of c-myc, cdc25A, and cdk2, and improved the levels of HIPK2 and p53. CONCLUSIONS These results provide new evidence to reveal the role of XPD in cSCC A431 cells and suggest that XPD may serve as an anti-oncogene during cSCC development.


The crystal structure of human XPG, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair.

  • Rocío González-Corrochano‎ et al.
  • Nucleic acids research‎
  • 2020‎

Nucleotide excision repair (NER) is an essential pathway to remove bulky lesions affecting one strand of DNA. Defects in components of this repair system are at the ground of genetic diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). The XP complementation group G (XPG) endonuclease cleaves the damaged DNA strand on the 3' side of the lesion coordinated with DNA re-synthesis. Here, we determined crystal structures of the XPG nuclease domain in the absence and presence of DNA. The overall fold exhibits similarities to other flap endonucleases but XPG harbors a dynamic helical arch that is uniquely oriented and defines a gateway. DNA binding through a helix-2-turn-helix motif, assisted by one flanking α-helix on each side, shows high plasticity, which is likely relevant for DNA scanning. A positively-charged canyon defined by the hydrophobic wedge and β-pin motifs provides an additional DNA-binding surface. Mutational analysis identifies helical arch residues that play critical roles in XPG function. A model for XPG participation in NER is proposed. Our structures and biochemical data represent a valuable tool to understand the atomic ground of XP and CS, and constitute a starting point for potential therapeutic applications.


Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs.

  • Lina Fu‎ et al.
  • Protein & cell‎
  • 2016‎

Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: