Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 841 papers

Xanthine oxidase inhibitors and sepsis.

  • Maria Fátima de Paula Ramos‎ et al.
  • International journal of immunopathology and pharmacology‎
  • 2018‎

Xanthine oxidase activation occurs in sepsis and results in the generation of uric acid (UrAc) and reactive oxygen species (ROS). We aimed to evaluate the effect of xanthine oxidase inhibitors (XOis) in rats stimulated with lipopolysaccharide (LPS). LPS (10 mg/kg) was administered intraperitoneally (i.p.) immediately after allopurinol (Alo, 2 mg/kg) or febuxostat (Feb, 1 mg/kg) every 24 h for 3 days. To increase UrAc levels, oxonic acid (Oxo) was administered by gavage (750 mg/kg per day) for 5 days. Animals were divided into the following 10 groups (n = 6 each): (1) Control, (2) Alo, (3) Feb, (4) LPS, (5) LPSAlo, (6) LPSFeb, (7) Oxo, (8) OxoLPS, (9) OxoLPSAlo, and (10) OxoLPSFeb. Feb with or without Oxo did not aggravate sepsis. LPS administration (with or without Oxo) significantly decreased the creatinine clearance (ClCr) in LPSAlo (60%, P < 0.01) versus LPS (44%, P < 0.05) and LPSFeb (35%, P < 0.05). Furthermore, a significant increase in mortality was observed with LPSAlo (28/34, 82%) compared to LPS treatment alone (10/16, 63%) and LPSFeb (11/17, 65%, P < 0.05). In addition, increased levels of thiobarbituric acid reactive substances (TBARS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 were observed at 72 h compared to the groups that received LPS and LPSFeb with or without Oxo. In this study, coadministration of Alo in LPS-induced experimental sepsis aggravated septic shock, leading to mortality, renal function impairment, and high ROS and proinflammatory IL levels. In contrast, administration of Feb did not potentiate sepsis, probably because it did not interfere with other metabolic events.


Coumarin derivatives as promising xanthine oxidase inhibitors.

  • Antonella Fais‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

Xanthine oxidase (XO) is an interesting target for the synergic treatment of several diseases. Coumarin scaffold plays an important role in the design of efficient and potent inhibitors. In the current work, twenty 3-arylcoumarins and eight 3-heteroarylcoumarins were evaluated for their ability to inhibit XO. Among all the candidates, 5,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (compound 20) proved to be the best inhibitor with an IC50 of 2.13 μM, being 7-fold better than the reference compound, allopurinol (IC50 = 14.75 μM). To deeply understand the potential of this compound, the inhibition mode was also evaluated. Compound 20 showed an uncompetitive profile of inhibition. Molecular docking studies were carried out to analyze the interaction of compound 20 with the studied enzyme. The binding mode involving residues different from the catalytic site of the binding pocket, is compatible to the observed uncompetitive inhibition. Compound 20 was not cytotoxic at its IC50 value, as demonstrated by the viability of 99.1% in 3 T3 cells. Furthermore, pharmacokinetics and physicochemical properties were also calculated, which corroborated with the potential of the studied compounds as promising XO inhibitors.


Role of xanthine oxidase in hydrogen peroxide production.

  • F Lacy‎ et al.
  • Free radical biology & medicine‎
  • 1998‎

Increased production of oxygen free radicals may play a role in many diseases such as hypertension. As evidence indicates that xanthine oxidase may be involved in creating these reactive oxygen species, experiments were performed to additionally characterize hydrogen peroxide (H2O2) production in xanthine oxidase catalyzed reactions. In vitro measurements of hydrogen peroxide production from the xanthine/xanthine oxidase reaction were performed in buffered saline using an electrochemical technique, and the effect of allopurinol on inhibition of xanthine oxidase was determined. Experiments were also performed in blood plasma to characterize endogenous hydrogen peroxide producing capability and xanthine oxidase activity. In the presence of sodium azide, an inhibitor of catalase, peroxide production was measured in plasma after adding xanthine or xanthine oxidase and the results were similar to those obtained in buffered saline. When only sodium azide was added to plasma, hydrogen peroxide was produced at a level of 36.1 +/- 7.6 microM (n = 5). From these measurements, endogenous xanthine oxidase activity was estimated to be 6.5 +/- 0.3 mU/ml (n = 5). These results suggests that sufficient substrate exists in plasma to produce micromolar levels of hydrogen peroxide and xanthine oxidase may catalyze these reactions.


Immunohistochemical localization of xanthine oxidase in human retina.

  • N E Fox‎ et al.
  • Free radical biology & medicine‎
  • 1998‎

Xanthine oxidase has been established as an important source of oxygen free radicals in ischemia-reperfusion injury. It has been localized in many different tissues such as heart and intestine, but it has not yet been localized in the eye. Xanthine oxidase was detected using immunohistochemistry on paraformaldehyde/glutaraldehyde fixed cryosections. Antibodies used included rabbit antibovine xanthine oxidase antibody and rabbit antihuman xanthine oxidase antibody. Xanthine oxidase was detected in the capillary endothelium cells of blood vessels in the retina of bovine and post mortem human eyes. Whole mount preparation of human retinas showed xanthine oxidase present throughout the small capillary network. Furthermore, whole mounts showed that xanthine oxidase was present in cones. This was confirmed by using mouse anticalbindin antibody for co-labelling. It is possible that xanthine oxidase can be a source of oxidative damage in the retina following ischemia-reperfusion injury.


Inhibitory effect of verbascoside on xanthine oxidase activity.

  • Yin Wan‎ et al.
  • International journal of biological macromolecules‎
  • 2016‎

In this study, we analyzed the inhibitory effect of verbascoside against xanthine oxidase (XOD) in vitro by using animal model and in vivo by direct inhibition assay. Results showed that verbascoside could reduce uric acid in rat serum and inhibit XOD activity in rat liver. The IC50 value of restraining XOD activity was 81.11mgmL-1. Fluorescence chromatographic analysis and circular dichroism spectroscopy indicated that the secondary structures of XOD were changed after incubation with verbascoside. The docking simulation showed that verbascoside could enter into the active site of XOD and form hydrogen bonding with amino acid residues (such as Lys-1045, Arg-880, Arg-912, Glu-1261 and Gln-1194). The results suggested that verbascoside, which is a naturally occurring water-soluble antioxidant, could be a potential low-toxicity XOD inhibitor for hyperuricemia treatment.


Local disposition of a new xanthine oxidase/xanthine dehydrogenase inhibitor, BOF-4272, in rat liver.

  • M Nishimura‎ et al.
  • Biological & pharmaceutical bulletin‎
  • 1994‎

The local hepatic disposition of BOF-4272, a newly developed xanthine oxidase (XO)/xanthine dehydrogenase (XDH) inhibitor, was evaluated in the rat perfusion system following pulse input of the drug into the portal vein. The elution time profiles from the liver into the hepatic vein were analyzed by dispersion models. The disposition of BOF-4272 through the rat liver was represented by a two-compartment dispersion model based on the Akaike's Information Criterion (AIC). The area under the concentration time curve (aucH) of BOF-4272 was proportional to the dosing amount, and the mean transit time was constant from 62.5 up to 500 micrograms/liver, which demonstrates that the local hepatic disposition of BOF-4272 is linear in this dosing range. The local disposition parameters were precisely estimated at the dosing amount of 250 micrograms/liver using several rats. These parameters in the dispersion model were correlated to the local moment characteristics. The hepatic recovery ratio (FH) was 22.8 +/- 3.2% and the mean transit time (tH) was 0.112 +/- 0.008 min, which show that the influx of BOF-4272 into the liver is efficiently large.


HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase.

  • Jayasri Nanduri‎ et al.
  • PloS one‎
  • 2015‎

Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.


Malaria inflammation by xanthine oxidase-produced reactive oxygen species.

  • Maureen C Ty‎ et al.
  • EMBO molecular medicine‎
  • 2019‎

Malaria is a highly inflammatory disease caused by Plasmodium infection of host erythrocytes. However, the parasite does not induce inflammatory cytokine responses in macrophages in vitro and the source of inflammation in patients remains unclear. Here, we identify oxidative stress, which is common in malaria, as an effective trigger of the inflammatory activation of macrophages. We observed that extracellular reactive oxygen species (ROS) produced by xanthine oxidase (XO), an enzyme upregulated during malaria, induce a strong inflammatory cytokine response in primary human monocyte-derived macrophages. In malaria patients, elevated plasma XO activity correlates with high levels of inflammatory cytokines and with the development of cerebral malaria. We found that incubation of macrophages with plasma from these patients can induce a XO-dependent inflammatory cytokine response, identifying a host factor as a trigger for inflammation in malaria. XO-produced ROS also increase the synthesis of pro-IL-1β, while the parasite activates caspase-1, providing the two necessary signals for the activation of the NLRP3 inflammasome. We propose that XO-produced ROS are a key factor for the trigger of inflammation during malaria.


Side Effects and Interactions of the Xanthine Oxidase Inhibitor Febuxostat.

  • Andreas Jordan‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2018‎

The paper addresses the safety of febuxostat and summarizes reports on side effects and interactions of febuxostat published by the cut-off date (last day of literature search) of 20 March 2018. Publications on side effects and the interactions of febuxostat were considered. Information concerning the occurrence of side effects and interactions in association with the treatment with febuxostat was collected and summarized in the review. The incidence of severe side effects was much less frequent than mild side effects (1.2⁻3.8% to 20.1⁻38.7%). The rate and range of febuxostat side effects are low at doses of up to 120 mg and only increase with a daily dose of over 120 mg. The publications reveal no age-dependent increase in side effects for febuxostat. In patients with impaired renal function, no increase in adverse events is described with a dose of up to 120 mg of febuxostat per day. Patients with impaired liver function had no elevated risk for severe side effects. A known allopurinol intolerance increases the risk of skin reactions during treatment with febuxostat by a factor of 3.6. No correlation between treatment with febuxostat and agranulocytosis has been confirmed. Possible interactions with very few medications (principally azathioprine) are known for febuxostat. Febuxostat is well tolerated and a modern and safe alternative to allopurinol therapy.


Xanthine oxidase-mediated oxidative stress promotes cancer cell-specific apoptosis.

  • Haixia Xu‎ et al.
  • Free radical biology & medicine‎
  • 2019‎

The natural compound Alternol was shown to induce profound oxidative stress and apoptotic cell death preferentially in cancer cells. In this study, a comprehensive investigation was conducted to understand the mechanism for Alternol-induced ROS accumulation responsible for apoptotic cell death. Our data revealed that Alternol treatment moderately increased mitochondrial superoxide formation rate, but it was significantly lower than the total ROS positive cell population. Pre-treatment with mitochondria-specific anti-oxidant MitoQ, NOX or NOS specific inhibitors had no protective effect on Alternol-induced ROS accumulation and cell death. However, XDH/XO inhibition by specific small chemical inhibitors or gene silencing reduced total ROS levels and protected cells from apoptosis induced by Alternol. Further analysis revealed that Alternol treatment significantly enhanced XDH oxidative activity and induced a strong protein oxidation-related damage in malignant but not benign cells. Interestingly, benign cells exerted a strong spike in anti-oxidant SOD and catalase activities compared to malignant cells after Alternol treatment. Cell-based protein-ligand engagement and in-silicon docking analysis showed that Alternol interacts with XDH protein on the catalytic domain with two amino acid residues away from its substrate binding sites. Taken together, our data demonstrate that Alternol treatment enhances XDH oxidative activity, leading to ROS-dependent apoptotic cell death.


Hydrogen peroxide generated by xanthine/xanthine oxidase system represses the proliferation of colorectal cancer cell line Caco-2.

  • Satoru Sakuma‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2015‎

The twin character of reactive oxygen species is substantiated by a growing body of evidence that reactive oxygen species within cells act as inducers and accelerators of the oncogenic phenotype of cancer cells, while reactive oxygen species can also induce cancer cell death and can therefore function as anti-tumorigenic species. The aim of this study was to assess a possible influence of xanthine/xanthine oxidase on the proliferation of colorectal cancer cell line Caco-2. xanthine/xanthine oxidase (2.5 µM/0.25 mU/ml-25 µM/2.5 mU/ml) dose-dependently inhibited the proliferation of Caco-2 cells. Experiments utilizing reactive oxygen species scavengers (superoxide dismutase, catalase and mannitol) and exogenous hydrogen peroxide revealed a major role of hydrogen peroxide in the xanthine/xanthine oxidase effect. Investigations utilizing annexin V-fluorescein/PI assay using flow cytometry, and the lactate dehydrogenase extracellular release assay indicated that hydrogen peroxide induced necrosis, but not apoptosis, in Caco-2 cells. These results suggest that hydrogen peroxide generated by xanthine/xanthine oxidase has the potential to suppress colorectal cancer cell proliferation.


Inhibition of Xanthine Oxidase-Catalyzed Xanthine and 6-Mercaptopurine Oxidation by Flavonoid Aglycones and Some of Their Conjugates.

  • Violetta Mohos‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Flavonoids are natural phenolic compounds, which are the active ingredients in several dietary supplements. It is well-known that some flavonoid aglycones are potent inhibitors of the xanthine oxidase (XO)-catalyzed uric acid formation in vitro. However, the effects of conjugated flavonoid metabolites are poorly characterized. Furthermore, the inhibition of XO-catalyzed 6-mercaptopurine oxidation is an important reaction in the pharmacokinetics of this antitumor drug. The inhibitory effects of some compounds on xanthine vs. 6-mercaptopurine oxidation showed large differences. Nevertheless, we have only limited information regarding the impact of flavonoids on 6-mercaptopurine oxidation. In this study, we examined the interactions of flavonoid aglycones and some of their conjugates with XO-catalyzed xanthine and 6-mercaptopurine oxidation in vitro. Diosmetin was the strongest inhibitor of uric acid formation, while apigenin showed the highest effect on 6-thiouric acid production. Kaempferol, fisetin, geraldol, luteolin, diosmetin, and chrysoeriol proved to be similarly strong inhibitors of xanthine and 6-mercaptopurine oxidation. While apigenin, chrysin, and chrysin-7-sulfate were more potent inhibitors of 6-mercaptopurine than xanthine oxidation. Many flavonoids showed similar or stronger (even 5- to 40-fold) inhibition of XO than the positive control allopurinol. Based on these observations, the extremely high intake of flavonoids may interfere with the elimination of 6-mercaptopurine.


Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice.

  • Johji Nomura‎ et al.
  • Scientific reports‎
  • 2014‎

Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE(-/-) mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE(-/-) mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis.


Structure-Activity Relationship of Xanthones as Inhibitors of Xanthine Oxidase.

  • Ling-Yun Zhou‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Polygala plants contain a large number of xanthones with good physiological activities. In our previous work, 18 xanthones were isolated from Polygala crotalarioides. Extented study of the chemical composition of the other species Polygala sibirica led to the separation of two new xanthones-3-hydroxy-1,2,6,7,8-pentamethoxy xanthone (A) and 6-O-β-d-glucopyranosyl-1,7-dimethoxy xanthone (C)-together with 14 known xanthones. Among them, some xanthones have a certain xanthine oxidase (XO) inhibitory activity. Furthemore, 14 xanthones as XO inhibitors were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. The CoMFA model predicted a q² value of 0.613 and an r² value of 0.997. The best CoMSIA model predicted a q² value of 0.608 and an r² value of 0.997 based on a combination of steric, electrostatic, and hydrophobic effects. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active XO inhibitors.


Human cardiovascular disease model predicts xanthine oxidase inhibitor cardiovascular risk.

  • Ryan E Feaver‎ et al.
  • PloS one‎
  • 2023‎

Some health concerns are often not identified until late into clinical development of drugs, which can place participants and patients at significant risk. For example, the United States Food and Drug Administration (FDA) labeled the xanthine oxidase inhibitor febuxostat with a"boxed" warning regarding an increased risk of cardiovascular death, and this safety risk was only identified during Phase 3b clinical trials after its approval. Thus, better preclinical assessment of drug efficacy and safety are needed to accurately evaluate candidate drug risk earlier in discovery and development. This study explored whether an in vitro vascular model incorporating human vascular cells and hemodynamics could be used to differentiate the potential cardiovascular risk associated with molecules that have similar on-target mechanisms of action. We compared the transcriptomic responses induced by febuxostat and other xanthine oxidase inhibitors to a database of 111 different compounds profiled in the human vascular model. Of the 111 compounds in the database, 107 are clinical-stage and 33 are FDA-labelled for increased cardiovascular risk. Febuxostat induces pathway-level regulation that has high similarity to the set of drugs FDA-labelled for increased cardiovascular risk. These results were replicated with a febuxostat analog, but not another structurally distinct xanthine oxidase inhibitor that does not confer cardiovascular risk. Together, these data suggest that the FDA warning for febuxostat stems from the chemical structure of the medication itself, rather than the target, xanthine oxidase. Importantly, these data indicate that cardiovascular risk can be evaluated in this in vitro human vascular model, which may facilitate understanding the drug candidate safety profile earlier in discovery and development.


The Xanthine Oxidase Inhibitor Febuxostat Suppresses Adipogenesis and Activates Nrf2.

  • Yoshiki Higa‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2023‎

Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3−L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating.


Xanthine oxidase of Acinetobacter calcoaceticus RL2-M4: Production, purification and characterization.

  • Monika‎ et al.
  • Protein expression and purification‎
  • 2019‎

Xanthine oxidase (EC 1.17.3.2) is a key enzyme of purine metabolism and has potential applications in food and pharmaceutical industries. In the present study, a new bacterial source of xanthine oxidase i.e. Acinetobacter calcoaceticus RL2-M4 with high oxidase activity was isolated from soil. The culture conditions were optimized with one variable at a time (OVAT) and response surface methodology (RSM) approaches included: a minimal salt medium (MSM) of pH 7.0 supplemented with 0.8% yeast extract, 8.5 mM xanthine and incubation at 30 °C for 24 h. Under these culture conditions 11.57 fold increase in the production of this enzyme was achieved. The enzyme was purified from A. calcoaceticus RL2-M4 using anion exchange chromatography to 8.18 fold with 31% yield and specific activity of 4.58 U/mg protein. SDS-PAGE analysis of the purified enzyme revealed that it was homodimer of 95 kDa and its native molecular mass was estimated to be 190 kDa. This enzyme was found to be stable at 35 °C for 5 h. The purified xanthine oxidase of A. calcoaceticus RL2-M4 had Km 0.3 mM and Vmax 5.8 U/mg protein using xanthine as substrate. The activity and stability characteristic of xanthine oxidase of A. calcoaceticus RL2-M4 makes it a potentially good enzyme for industrial applications.


Phloroglucinol Derivatives from Dryopteris crassirhizoma as Potent Xanthine Oxidase Inhibitors.

  • Heung Joo Yuk‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Dryopteris crassirhizoma rhizomes are used as a traditional medicine in Asia. The EtOAc extract of these roots has shown potent xanthine oxidase (XO) inhibitory activity. However, the main phloroglucinols in D. crassirhizoma rhizomes have not been analyzed. Thus, we investigated the major constituents responsible for this effect. Bioassay-guided purification isolated four compounds: flavaspidic acid AP (1), flavaspidic acid AB (2), flavaspidic acid PB (3), and flavaspidic acid BB (4). Among these, 1 showed the most potent inhibitory activity with a half-maximal inhibitory concentration (IC50) value of 6.3 µM, similar to that of allopurinol (IC50 = 5.7 µM) and better than that of oxypurinol (IC50 = 43.1 µM), which are XO inhibitors. A comparative activity screen indicated that the acetyl group at C3 and C3' is crucial for XO inhibition. For example, 1 showed nearly 4-fold higher efficacy than 4 (IC50 = 20.9 µM). Representative inhibitors (1-4) in the rhizomes of D. crassirhizoma showed reversible and noncompetitive inhibition toward XO. Furthermore, the potent inhibitors were shown to be present in high quantities in the rhizomes by a UPLC-QTOF-MS analysis. Therefore, the rhizomes of D. crassirhizoma could be used to develop nutraceuticals and medicines for the treatment of gout.


The mechanism and significance of the conversion of xanthine dehydrogenase to xanthine oxidase in mammalian secretory gland cells.

  • Teruo Kusano‎ et al.
  • Redox biology‎
  • 2023‎

The conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XO) occurs only in mammalian species. In fresh bovine milk, the enzyme exists predominantly as the oxidase form, in contrast to various normal organs where it is found primarily as the dehydrogenase: the mechanism of conversion to the oxidase in milk remains obscure. A systematic search for the essential factors for conversion from XDH to XO has been performed within fresh bovine milk using the highly purified dehydrogenase form after removal endogenous oxidase form by fractionation analysis. We find that conversion to the oxidase form requires four components under air: lactoperoxidase (LPO), XDH, SCN-, and substrate hypoxanthine or xanthine; the contribution of sulfhydryl oxidase appears to be minor. Disulfide bond formation between Cys-535 and Cys-995 is principally involved in the conversion, consistent with the result obtained from previous work with transgenic mice. In vitro reconstitution of LPO and SCN- results in synergistic conversion of the dehydrogenase to the oxidase the presence of xanthine, indicating the conversion is autocatalytic. Milk from an LPO knockout mouse contains a significantly greater proportion of the dehydrogenase form of the enzyme, although some oxidase form is also present, indicating that LPO contributes principally to the conversion, but that sulfhydryl oxidase (SO) may also be involved to a minor extent. All the components XDH/LPO/SCN- are necessary to inhibit bacterial growth in the presence of xanthine through disulfide bond formation in bacterial protein(s) required for replication, as part of an innate immunity system in mammals. Human GTEx Data suggest that mRNA of XDH and LPO are highly co-expressed in the salivary gland, mammary gland, mucosa of the airway and lung alveoli, and we have confirmed these human GTEx Data experimentally in mice. We discuss the possible roles of these components in the propagation of SARS-CoV-2 in these human cell types.


Structure-activity relationships of fraxamoside as an unusual xanthine oxidase inhibitor.

  • Rosa Maria Vitale‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2017‎

Fraxamoside, a macrocyclic secoiridoid glucoside featuring a hydroxytyrosol group, was recently identified as a xanthine oxidase inhibitor (XOI) comparable in potency in vitro to the standard antigout drug allopurinol. However, this activity and its considerably higher value than its derivatives oleuropein, oleoside 11-methyl ester, and hydroxytyrosol are not explained by structure-activity relationships (SARs) of known XOIs. To exclude allosteric mechanisms, we first determined the inhibition kinetic of fraxamoside. The resulting competitive mechanism prompted a computational SAR characterization, combining molecular docking and dynamics, which fully explained the behavior of fraxamoside and its derivatives, attributed the higher activity of the former to conformational properties of its macrocycle, and showed a substantial contribution of the glycosidic moiety to binding, in striking contrast with glycoside derivatives of most other XOIs. Overall, fraxamoside emerged as a lead compound for a new class of XOIs potentially characterized by reduced interference with purine metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: