Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 841 papers

The role of xanthine oxidase in hemodialysis-induced oxidative injury: relationship with nutritional status.

  • Dijana Miric‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2013‎

The role of xanthine oxidase (XOD) in patients undergoing chronic hemodialysis treatment (HD) is poorly understood. Geriatric nutritional risk index (GNRI) ≤ 90 could be linked with malnutrition-inflammation complex syndrome. This study measured XOD, myeloperoxidase (MPO), superoxide dismutase (SOD), lipid hydroperoxides, total free thiol groups, and advanced oxidation protein products (AOPP) in 50 HD patients before commencing (pre-HD) and immediately after completion of HD session (post-HD) and in 22 healthy controls. Pre-HD serum hydroperoxides, AOPP, XOD, and SOD were higher and total thiol groups were lower in patients than in controls (P < 0.05, resp.). Compared to baseline values, serum MPO activity was increased irrespective of GNRI status. Serum XOD activity was increasing during HD treatment in the group with GNRI ≤ 90 (P = 0.030) whilst decreasing in the group with GNRI > 90 (P = 0.002). In a multiple regression analysis, post-HD serum XOD activity was independently associated with GNRI ≤ 90 ( β ± SE: 0.398 ± 0.151; P = 0.012) and HD vintage ( β ± SE: -0.349 ± 0.139; P = 0.016). These results indicate that an upregulated XOD may be implicated in HD-induced oxidative injury contributing to accelerated protein damage in patients with GNRI ≤ 90.


Novel xanthine oxidase-based cell model using HK-2 cell for screening antihyperuricemic functional compounds.

  • Chuanli Hou‎ et al.
  • Free radical biology & medicine‎
  • 2019‎

Hyperuricemia is a metabolic disease caused by disorders of purine metabolism, the prevalence of which has increased worldwide. Here, a cell model for high uric acid production was established in vitro employing cultured human kidney cells (HK-2 cells), and its molecular basis was analyzed using gene expression profile. High performance liquid chromatography (HPLC) was used to monitor the content of metabolites in cell culture media. Adenosine addition was found to induce HK-2 cells to produce uric acid precursors (inosine and hypoxanthine). Furthermore, the cell model was verified by confirming the antihyperuricemic effect of the widely used antihyperuricemic drugs allopurinol, probenecid, and febuxostat, as well as reported bioactive peptides and amino acids, encompassing glutathione, tryptophan and carnosine, which significantly reduced uric acid production in the HK-2 cells (p < 0.05). RNA-Seq technology was used to perform a wide transcriptome analysis of the hyperuricemic cell model, and the results demonstrated that it has the potential to be used as a rapid and valid in vitro model to screen antihyperuricemic compounds that mimics in vivo cell growth patterns.


Antigout Effects of Plantago asiatica: Xanthine Oxidase Inhibitory Activities Assessed by Electrochemical Biosensing Method.

  • Jin-Xiang Zeng‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

The XOD inhibitory effects of Plantaginis Semen, that is, the seeds of P. asiatisca, and its representative four single compounds, acteoside, 1H-indolo-3-carbaldehyde, isoacteoside, and myristic acid, were evaluated by electron transfer signal blocking activities (ETSBA), which is based on the electron transfer signal of XOD enzymatic reaction. The blocking activities were detected using an electrochemical biosensing method. Compared with control, significant effects were observed after the addition of P. asiatica extract, acteoside, and 1H-indolo-3-carbaldehyde (all p < 0.05). The IC50 values of the extract and acteoside are 89.14 and 7.55 μg·mL-1, respectively. The IC20 values of the extract, acteoside, and 1H-indolo-3-carbaldehyde are 24.28, 3.88, and 16.16 μg·mL-1, respectively. Due to the relatively lower inhibitory potential of 1H-indolo-3-carbaldehyde, its IC50 was not obtained. In addition, isoacteoside and myristic acid did not show any XOD inhibitory effects. Our data demonstrated that the XOD inhibitory effects of the extract, acteoside, and 1H-indolo-3-carbaldehyde can be accurately evaluated by the ETSBA method. The results from this study indicated that Plantaginis Semen significantly inhibited XOD activities to reduce hyperuricemia and treat gout. The study also proves that measuring the electron transfer signal blocking activities is a simple, sensitive, and accurate method to evaluate the XOD inhibitory effects.


In Vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts.

  • Geethaa Sahgal‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2009‎

This study examines the in vitro antioxidant activities of the methanol extract of Swietenia mahagoni seeds (SMCM seed extract). The extract was screened for possible antioxidant activities by free radical scavenging activity (DPPH), xanthine oxidase inhibition (XOI), hydrogen peroxide scavenging activity (HPSA) and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents were also determined. The extract exhibits antioxidant activity of 23.29% with an IC(50 )value of 2.3 mg/mL in the DPPH radical scavenging method, 47.2% in the XOI assay, 49.5% by the HPSA method, and 0.728 mmol/Fe(II)g in the FRAP method at the concentration tested. The amount of total phenolics and flavonoid contents was 70.83 mg gallic acid equivalent (GAE) and 2.5 +/- 0.15 mg of catechin equivalent per gram of dry extract, respectively. High Performance Thin Layer Chromatography (HPTLC) screening indicates the presence of phenolic compounds in the SMCM seed extract. The results indicate that the extract has both high free radical scavenging and xanthine oxidase inhibition activity. The antioxidant activity of SMCM seed extract is comparable with that of other Malaysian tropical fruits and herbal plants.


Acetate ameliorates nephrotoxicity in streptozotocin-nicotinamide-induced diabetic rats: Involvement of xanthine oxidase activity.

  • Kehinde S Olaniyi‎ et al.
  • Cytokine‎
  • 2021‎

Impaired renal function is a common complication of diabetes mellitus (DM) that often degenerates to cardiovascular disease, contributing to high morbidity and reduced survival worldwide. Short chain fatty acids (SCFAs), including acetate has shown potential benefits in glycemic or metabolic regulation but its effect on diabetes-associated renal toxicity/impairment is not clear. Herein, we investigated the hypothesis that acetate would ameliorate renal toxicity, accompanying DM, possibly by suppression of xanthine oxidase (XO) activity. Adult male Wistar rats (230-260 g) were allotted into groups (n = 6/group) namely: control (vehicle; po), sodium acetate (NaAc)-treated (200 mg/kg), diabetic with or without NaAc groups. DM was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide (110 mg/kg). Diabetic animals showed increased fasting glucose and insulin, renal triglyceride, total cholesterol, atherogenic lipid, malondialdehyde, XO, tissue necrosis factor-α, uric acid, interleukin-6, aspartate transaminase/alanine aminotransferase ratio, gamma-glutamyl transferase and decreased glutathione and nitric oxide concentration. The renal tissue was characterized with disrupted tissue architecture, enlarged Bowman's space, congested glomeruli and adherence of abnormal segments of tuft to Bowman's capsule with consequent elevated serum creatinine and urea concentration. However, these alterations were attenuated by NaAc. The study demonstrates that acetate ameliorates diabetes-induced nephrotoxicity, which is associated with suppressed XO and its accompanied pro-inflammatory mediators. Therefore, SCFAs, acetate would be a promising dietary-derived therapeutic agent for the prevention and management of diabetes-associated renal disturbances.


Role of NADPH oxidase and xanthine oxidase in mediating inducible VT/VF and triggered activity in a canine model of myocardial ischemia.

  • James B Martins‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Ventricular tachycardia or fibrillation (VT/VF) of focal origin due to triggered activity (TA) from delayed afterdepolarizations (DADs) is reproducibly inducible after anterior coronary artery occlusion. Both VT/VF and TA can be blocked by reducing reactive oxygen species (ROS). We tested the hypothesis that inhibition of NADPH oxidase and xanthine oxidase would block VT/VF.


Molecular Dockings and Molecular Dynamics Simulations Reveal the Potency of Different Inhibitors against Xanthine Oxidase.

  • Yue Pan‎ et al.
  • ACS omega‎
  • 2021‎

Xanthine oxidase (XO), which can catalyze the formation of xanthine or hypoxanthine to uric acid, is the most important target of gout. To explore the conformational changes for inhibitor binding, molecular dockings and molecular dynamics simulations were performed. Docking results indicated that three inhibitors had similar pose binding to XO. Molecular dynamics simulations showed that the binding of three inhibitors influenced the secondary structure changes in XO. After binding to the inhibitor, the peptide Phe798-Leu814 formed different degrees of unhelix, while for the peptide Glu1065-Ser1075, only a partial helix region was formed when allopurinol was bound. Through the protein structure analysis in the simulation process, we found that the distance between the active residues Arg880 and Thr1010 was reduced and the distance between Glu802 and Thr1010 was increased after the addition of inhibitors. The above simulation results showed the similarities and differences of the interaction between the three inhibitors binding to the protein. MM-PBSA calculations suggested that, among three inhibitors, allopurinol had the best binding effect with XO followed by daidzin and puerarin. This finding was consistent with previous experimental data. Our results can provide some useful clues for further gout treatment research.


Synthesis, screening and docking of fused pyrano[3,2-d]pyrimidine derivatives as xanthine oxidase inhibitor.

  • Manroopraj Kaur‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

In view of developing effective xanthine oxidase (XO) enzyme inhibitors, a series of 100 pyrano[3,2-d]pyrimidine derivatives was synthesized and evaluated for its in vitro XO enzyme inhibition. Structure activity relationship has also been established. Among all the synthesized compounds, 4d, 8d and 9d were found to be the most potent enzyme inhibitors with IC50 values of 8μM, 8.5μM and 7μM, respectively. Compound 9d was further investigated in enzyme kinetic studies and the Lineweaver-Burk plot revealed that the compound 9d was mixed type inhibitor. Molecular properties of the most potent compounds 4d, 8d and 9d, have also been calculated. Docking study was performed to investigate the recognition pattern between xanthine oxidase and the most potent XO inhibitor, 9d. The study suggests that 9d may block the activity of XO sufficiently enough to prevent the substrate from binding to its active site.


Xanthine oxidase does not contribute to impaired peripheral conduit artery endothelium-dependent dilatation with ageing.

  • Iratxe Eskurza‎ et al.
  • The Journal of physiology‎
  • 2006‎

Vascular oxidative stress is the key mechanism involved in the age-related decline in endothelium-dependent dilatation (EDD). We tested the hypothesis that xanthine oxidase (XO), a major vascular source of reactive oxygen species, contributes to the impairment in EDD with ageing. At baseline, brachial artery flow-mediated dilatation (FMD) was 55% lower in older (n = 9, 64 +/- 2 years, 8M/1F, mean +/- S.E.M.) versus young (n = 9, 26 +/- 1 years, 8M/1F) healthy adults (3.41 +/- 0.44 versus 7.53 +/- 0.67%, P < 0.001), whereas endothelium-independent dilatation (EID; sublingual nitroglycerin) did not differ between groups. Plasma oxidized low-density lipoprotein (oxi-LDL), a measure of systemic oxidative stress, was greater at baseline in the older subjects (58.3 +/- 5.9 versus 46.8 +/- 2.4 U l(-1), P < 0.05) and inversely correlated with baseline FMD (r = - 0.54; P < 0.05). Acute administration of allopurinol, a competitive inhibitor of XO, reduced plasma uric acid concentrations similarly in both groups (P < 0.001), but did not affect FMD, EID, or oxi-LDL in either group. Vascular endothelial protein expression of XO (immunofluorescence) was not different in antecubital venous cells from the young and older subjects (0.56 +/- 0.12 versus 0.68 +/- 0.19 XO intensity/human umbilical vein endothelial cell intensity, P = 0.49). We conclude that XO does not contribute to oxidative stress-associated reductions in peripheral conduit artery EDD with ageing in humans, possibly due to an absence of age-associated up-regulation of endothelial XO.


Evaluation of Enzyme Inhibitory Activity of Flavonoids by Polydopamine-Modified Hollow Fiber-Immobilized Xanthine Oxidase.

  • Cong-Peng Zhao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

In this study, a polydopamine (PDA)-modified hollow fiber-immobilized xanthine oxidase (XOD) was prepared for screening potential XOD inhibitors from flavonoids. Several parameters for the preparation of PDA-modified hollow fiber-immobilized XOD, including the dopamine concentration, modification time, XOD concentration and immobilization time, were optimized. The results show that the optimal conditions for immobilized XOD activity were a dopamine concentration of 2.0 mg/mL in 10.0 mM Tris-HCl buffer (pH 8.5), a modification time of 3.0 h, an XOD concentration of 1000 μg/mL in 10.0 mM phosphate buffer (pH 7.5) and an immobilization time of 3.0 h. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were investigated, and the enzyme kinetics and inhibition parameters were determined. The results indicate that the optimal pH value (7.5) and temperature (37 °C) of the PDA-modified hollow fiber-immobilized XOD were consistent with the free enzyme. Moreover, the PDA-modified hollow fiber-immobilized XOD could still maintain above 50% of its initial immobilized enzyme activity after seven consecutive cycles. The Michaelis-Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of allopurinol on the immobilized XOD were determined as 0.25 mM and 23.2 μM, respectively. Furthermore, the PDA-modified hollow fiber-immobilized XOD was successfully applied to evaluate the inhibitory activity of eight flavonoids. Quercetin, apigenin, puerarin and epigallocatechin showed a good inhibition effect, and their percentages of inhibition were (79.86 ± 3.50)%, (80.98 ± 0.64)%, (61.15 ± 6.26)% and (54.92 ± 0.41)%, respectively. Finally, molecular docking analysis further verified that these four active compounds could bind to the amino acid residues in the XOD active site. In summary, the PDA-modified hollow fiber-immobilized XOD is an efficient method for the primary screening of XOD inhibitors from natural products.


Investigation of the interaction between Chrysoeriol and xanthine oxidase using computational and in vitro approaches.

  • Yan Liu‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Xanthine oxidase (XO) plays a vital role in inducing hyperuricemia and increasing the level of superoxide free radicals in blood, and is proved as an important target for gout. Chrysoeriol (CHE) is a natural flavone with potent XO inhibitory activity (IC50 = 2.487 ± 0.213 μM), however, the mechanism of interaction is still unclear. Therefore, a comprehensive analysis of the interaction between CHE and XO was accomplished by enzyme kinetics, isothermal titration calorimetry (ITC), multi-spectroscopic methods, molecular simulation and ADMET. The results showed that CHE acted as a rapid reversible and competitive-type XO inhibitor and its binding to XO was driven by hydrogen bonding and hydrophobic interaction. Moreover, CHE exhibited a strong fluorescence quenching effect through a static quenching procedure and induced conformational changes of XO. Its binding pattern with XO was revealed by docking study and the binding affinity to XO was enhanced by the interactions with key amino acid residues in the active pocket of XO. Further, CHE showed good stability and pharmacokinetic behavior properties in molecule dynamic simulation and ADMET prediction. Overall, this study shed some light on the mechanism of interaction between CHE and XO, also provided some valuable information concerning the future therapeutic application of CHE as natural XO inhibitor.


Identification of Xanthine Oxidase Inhibitors from Celery Seeds Using Affinity Ultrafiltration-Liquid Chromatography-Mass Spectrometry.

  • Xiaona Gan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Celery seeds have been used as an effective dietary supplement to manage hyperuricemia and diminish gout recurrence. Xanthine oxidase (XOD), the critical enzyme responsible for uric acid production, represents the most promising target for anti-hyperuricemia in clinical practice. In this study, we aimed to establish a method based on affinity ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) to directly and rapidly identify the bioactive compounds contributing to the XOD-inhibitory effects of celery seed crude extracts. Chemical profiling of celery seed extracts was performed using UPLC-TOF/MS. The structure was elucidated by matching the multistage fragment ion data to the database and publications of high-resolution natural product mass spectrometry. Thirty-two compounds, including fourteen flavonoids and six phenylpeptides, were identified from celery seed extracts. UF-LC-MS showed that luteolin-7-O-apinosyl glucoside, luteolin-7-O-glucoside, luteolin-7-O-malonyl apinoside, luteolin-7-O-6'-malonyl glucoside, luteolin, apigenin, and chrysoeriol were potential binding compounds of XOD. A further enzyme activity assay demonstrated that celery seed extract (IC50 = 1.98 mg/mL), luteolin-7-O-apinosyl glucoside (IC50 = 3140.51 μmol/L), luteolin-7-O-glucoside (IC50 = 975.83 μmol/L), luteolin-7-O-6'-malonyl glucoside (IC50 = 2018.37 μmol/L), luteolin (IC50 = 69.23 μmol/L), apigenin (IC50 = 92.56 μmol/L), and chrysoeriol (IC50 = 40.52 μmol/L) could dose-dependently inhibit XOD activities. This study highlighted UF-LC-MS as a useful platform for screening novel XOD inhibitors and revealed the chemical basis of celery seed as an anti-gout dietary supplement.


Metabolites of Procyanidins From Litchi Chinensis Pericarp With Xanthine Oxidase Inhibitory Effect and Antioxidant Activity.

  • Yong Sui‎ et al.
  • Frontiers in nutrition‎
  • 2021‎

Procyanidins from litchi pericarp (LPPC) has been evidenced to possess strong antioxidant activities in vivo that is possibly correlated with their intestinal metabolites. However, the xanthine oxidase inhibitory effect of LPPC and its metabolites was less concerned. In this study, three oligomeric procyanidins and eight metabolic phenolic acids were identified in the urine of rats administrated with LPPC by high performance liquid chromatography and liquid chromatography-mass spectrometry analysis. Data indicated that all the metabolites excreted were significantly increased by the treatment of 300 mg/kg body weight of LPPC (P < 0.05), revealing considerable 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH) and hydroxyl radicals activities of scavenging. Moreover, phenolic metabolites involving epicatechin, A-type dimer, A-type trimer, caffeic acid, and shikimic acid exhibited greater xanthine oxidase inhibition effects compared with other metabolites, with an inhibitory rate higher than 50% at the concentration 200 μg/ml. The IC50 value of these five phenols were 58.43 ± 1.86, 68.37 ± 3.50, 74.87 ± 1.30, 95.67 ± 3.82, and 96.17 ± 1.64 μg/ml, respectively. As a whole, this work suggests that the xanthine oxidase inhibition and antioxidant activity of LPPC-derived metabolites as one of the mechanisms involved in the beneficial effects of LPPC against hyperuricemia or gout.


Therapeutic effects and mechanisms of N-(9,10-anthraquinone-2-ylcarbonyl) xanthine oxidase inhibitors on hyperuricemia.

  • Tianshu Gao‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Objective: To observe the antioxidative effects of N-(9,10-anthraquinone-2-ylcarbonyl) xanthine oxidase inhibitors (NAY) in vitro and in vivo models of hyperuricemia and explore the mechanism. Methods: A classical experimental method of acute toxicity and a chronic toxicity test were used to compare the toxic effects of different doses of NAY in mice. The hyperuricemia mouse model was established by gavage of potassium oxonate in vivo. After treatment with different doses of NAY (low dose: 10 mg/kg, medium dose: 20 mg/kg, and high dose: 40 mg/kg) and allopurinol (positive drug, 10 mg/kg), observe the levels of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) in urine and serum, respectively, and detect the activities of xanthine oxidase in the liver. The hyperuricemia cell model was induced by adenosine and xanthine oxidase in vitro. The cells were given different doses of NAY (50, 100, and 200 μmol/L) and allopurinol (100 μmol/L). Then the culture supernatant UA level of the medium was measured. The next step was to detect the xanthine oxidase activity in the liver and AML12 cells, and the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammatory factors in the kidney and serum of mice. Western blot was used to detect xanthine oxidase protein expression in mouse liver tissue and AML12 cells, ASC, Caspase-1, NLRP3, GLUT9, OAT1, and OAT3 protein expression in mouse kidney tissue and HK-2 cells. Hematoxylin-eosin staining was used to stain the liver and kidney tissues of mice and observe the tissue lesions. Results: NAY had little effect on blood routine and biochemical indexes of mice, but significantly reduced the serum UA level. NAY significantly reduced the level of UA in hyperuricemia mice and cells by inhibiting xanthine oxidase activity and reduced the levels of TNF-α, IL-6, and other inflammatory factors in serum and kidney of mice. NAY can inhibit inflammation by inhibiting the NLRP3 pathway. In addition, NAY can downregulate GLUT9 protein expression and upregulate OAT1 and OAT3 protein expression to reduce the UA level by promoting UA excretion and inhibiting UA reabsorption. Conclusion: These findings suggested that NAY produced dual hypouricemic actions. On the one hand, it can inhibit the formation of UA by inhibiting xanthine oxidase inhibitors activity, and on the other hand, it can promote the excretion of UA by regulating the UA transporter. It provides new ideas for the development of hyperuricemia drugs in the future.


Release of hepatic xanthine oxidase (XO) to the circulation is protective in intravascular hemolytic crisis.

  • Heidi M Schmidt‎ et al.
  • Redox biology‎
  • 2023‎

Xanthine oxidase (XO) catalyzes the catabolism of hypoxanthine to xanthine and xanthine to uric acid, generating oxidants as a byproduct. Importantly, XO activity is elevated in numerous hemolytic conditions including sickle cell disease (SCD); however, the role of XO in this context has not been elucidated. Whereas long-standing dogma suggests elevated levels of XO in the vascular compartment contribute to vascular pathology via increased oxidant production, herein, we demonstrate, for the first time, that XO has an unexpected protective role during hemolysis. Using an established hemolysis model, we found that intravascular hemin challenge (40 μmol/kg) resulted in a significant increase in hemolysis and an immense (20-fold) elevation in plasma XO activity in Townes sickle cell phenotype (SS) sickle mice compared to controls. Repeating the hemin challenge model in hepatocyte-specific XO knockout mice transplanted with SS bone marrow confirmed the liver as the source of enhanced circulating XO as these mice demonstrated 100% lethality compared to 40% survival in controls. In addition, studies in murine hepatocytes (AML12) revealed hemin mediates upregulation and release of XO to the medium in a toll like receptor 4 (TLR4)-dependent manner. Furthermore, we demonstrate that XO degrades oxyhemoglobin and releases free hemin and iron in a hydrogen peroxide-dependent manner. Additional biochemical studies revealed purified XO binds free hemin to diminish the potential for deleterious hemin-related redox reactions as well as prevents platelet aggregation. In the aggregate, data herein reveals that intravascular hemin challenge induces XO release by hepatocytes through hemin-TLR4 signaling, resulting in an immense elevation of circulating XO. This increased XO activity in the vascular compartment mediates protection from intravascular hemin crisis by binding and potentially degrading hemin at the apical surface of the endothelium where XO is known to be bound and sequestered by endothelial glycosaminoglycans (GAGs).


Inhibition of Xanthine Oxidase Protects against Sepsis-Induced Acute Kidney Injury by Ameliorating Renal Hypoxia.

  • Ting-Ting Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1β in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.


Epicatechin Gallate as Xanthine Oxidase Inhibitor: Inhibitory Kinetics, Binding Characteristics, Synergistic Inhibition, and Action Mechanism.

  • Miao Zhu‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

Epicatechin gallate (ECG) is one of the main components of catechins and has multiple bioactivities. In this work, the inhibitory ability and molecular mechanism of ECG on XO were investigated systematically. ECG was determined as a mixed xanthine oxidase (XO) inhibitor with an IC50 value of 19.33 ± 0.45 μM. The promotion of reduced XO and the inhibition of the formation of uric acid by ECG led to a decrease in O2- radical. The stable ECG-XO complex was formed by hydrogen bonds and van der Waals forces, with the binding constant of the magnitude of 104 L mol-1, and ECG influenced the stability of the polypeptide skeleton and resulted in a more compact conformation of XO. Computational simulations further characterized the binding characteristics and revealed that the inhibitory mechanism of ECG on XO was likely that ECG bound to the vicinity of flavin adenine dinucleotide (FAD) and altered the conformation of XO, hindering the entry of substrate and the diffusion of catalytic products. ECG and allopurinol bound to different active sites of XO and exerted a synergistic inhibitory effect through enhancing their binding stability with XO and changing the target amino acid residues of XO. These findings may provide a theoretical basis for the further application of ECG in the fields of food nutrition and functional foods.


Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body.

  • Tran Ngoc Quy‎ et al.
  • Medicines (Basel, Switzerland)‎
  • 2019‎

Background: Cordyceps militaris is a medicinal mushroom and has been extensively used as a folk medicine in East Asia. In this study, the separation of constituents involved in xanthine oxidase (XO) inhibitory, antioxidant and antibacterial properties of C. militaris was conducted. Methods: The aqueous residue of this fungus was extracted by methanol and then subsequently fractionated by hexane, chloroform, ethyl acetate and water. The ethyl acetate extract possessed the highest XO inhibitory and antioxidant activities was separated to different fractions by column chromatography. Each fraction was then subjected to anti-hyperuricemia, antioxidant and antibacterial assays. Results: The results showed that the CM8 fraction exhibited the strongest XO inhibitory activity (the lowest IC50: 62.82 μg/mL), followed by the CM10 (IC50: 68.04 μg/mL) and the CM7 (IC50: 86.78 μg/mL). The level of XO inhibition was proportional to antioxidant activity. In antibacterial assay, the CM9 and CM11 fractions showed effective antibacterial activity (MIC values: 15⁻25 mg/mL and 10⁻25 mg/mL, respectively). Results from gas chromatography-mass spectrometry (GC-MS) analyses indicated that cordycepin was the major constituent in the CM8 and CM10 fractions. Conclusions: This study revealed that C. militaris was beneficial for treatment hyperuricemia although in vivo trials on compounds purified from this medicinal fungus are needed.


Effects of industrial heat treatments on the kinetics of inactivation of antimicrobial bovine milk xanthine oxidase.

  • Gulustan Ozturk‎ et al.
  • NPJ science of food‎
  • 2019‎

Milk is a source of antimicrobial systems such as xanthine oxidoreductase, which has been proposed to modulate the oral and gut microbiota of infants. Heat treatments are applied to milk to ensure its microbial safety, however, the effects of heat on this antimicrobial enzyme are not known. The effects of batch pasteurization (BP), high-temperature short time (HTST), and ultra high temperature (UHT) on kinetics of inactivation of xanthine oxidase and its antimicrobial properties were determined. Xanthine oxidase activity was preserved by HTST (100%). Partial (8%) and nearly complete (95%) enzyme inactivation were observed for BP and UHT milks, respectively. K m values of 100 μM and V max values of 6.85, 5.12, 6.31, and 0.40 μmol/min/mg were determined for xanthine oxidase in raw, BP, HTST, and UHT milks, respectively. These results demonstrate that xanthine oxidase maintains apparent affinity and activity for its substrate when milk is treated by BP and HTST and yet the enzyme is inactivated with UHT. To investigate heat treatment-induced alterations in the biological activity of xanthine oxidase, heat treated milks were compared to raw milk for their ability to inhibit the growth of S. aureus. Raw, BP, and HTST milk xanthine oxidase efficiently inhibited S. aureus growth. However, these antibacterial properties were lost when milk was subjected to UHT. These results demonstrate that HTST and BP preserves bovine milk xanthine oxidase activity compared with UHT and that, the judicious selection of thermal treatments could be exploited to preserve the antimicrobial properties of bovine milk.


Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes.

  • Luisa B Maia‎ et al.
  • Redox biology‎
  • 2018‎

Nitric oxide radical (NO) is a signaling molecule involved in several physiological and pathological processes and a new nitrate-nitrite-NO pathway has emerged as a physiological alternative to the "classic" pathway of NO formation from L-arginine. Since the late 1990s, it has become clear that nitrite can be reduced back to NO under hypoxic/anoxic conditions and exert a significant cytoprotective action in vivo under challenging conditions. To reduce nitrite to NO, mammalian cells can use different metalloproteins that are present in cells to perform other functions, including several heme proteins and molybdoenzymes, comprising what we denominated as the "non-dedicated nitrite reductases". Herein, we will review the current knowledge on two of those "non-dedicated nitrite reductases", the molybdoenzymes xanthine oxidoreductase and aldehyde oxidase, discussing the in vitro and in vivo studies to provide the current picture of the role of these enzymes on the NO metabolism in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: