Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Estradiol Alters the Virulence Traits of Uropathogenic Escherichia coli.

  • Ulrik Engelsöy‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Uropathogenic Escherichia coli (UPEC) is the most common bacteria to cause urinary tract infection (UTI). Postmenopausal women have an increased risk of recurrent UTI. This is partly explained by estrogenic effects on host defenses against UTI. Current research is mostly focused on how UPEC affects host factors, but not so much is known about how host factors like hormones affect UPEC virulence. The aim of the present study was to investigate the impact of estradiol exposure on the virulence of UPEC. We found that a postmenopausal concentration of estradiol increased CFT073 growth and biofilm formation, but not the premenopausal concentrations. Real-time qPCR showed that estradiol altered the expression of genes associated with the iron acquisition system and metabolic pathways in CFT073. We also found that estradiol in a dose-dependent manner increased the expression of fimH and papC adhesins and increased colonization and invasion of bladder epithelial cells. The premenopausal concentration of estradiol also suppressed cytokine release from bladder epithelial cells. Additionally, we also showed using a Caenorhabditis elegans killing assay that estradiol increased the survival of CFT073-infected C. elegans worms. Taken together, our findings show that estradiol has the ability to alter the virulence traits of UPEC.


Impact of Proinflammatory Cytokines on the Virulence of Uropathogenic Escherichia coli.

  • Ulrik Engelsöy‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

The effect of a urinary tract infection on the host is a well-studied research field. However, how the host immune response affects uropathogenic Escherichia coli (CFT073) virulence is less studied. The aim of the present study was to investigate the impact of proinflammatory cytokine exposure on the virulence of uropathogenic Escherichia coli. We found that all tested proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8 and IFN-γ) induced an increased CFT073 growth. We also found that biofilm formation and hemolytic activity was reduced in the presence of all proinflammatory cytokines. However, a reduction in siderophore release was only observed in the presence of IL-1β, IL-6 and IL-8. Real time-qPCR showed that all proinflammatory cytokines except TNF-α significantly increased genes associated with the iron acquisition system in CFT073. We also found that the proinflammatory cytokines induced significant changes in type-1 fimbriae, P-fimbriae and gluconeogenetic genes. Furthermore, we also showed, using a Caenorhabditis elegans (C. elegans) killing assay that all cytokines decreased the survival of C. elegans worms significantly. Taken together, our findings show that proinflammatory cytokines have the ability to alter the virulence traits of UPEC.


A High-resolution Typing Assay for Uropathogenic Escherichia coli Based on Fimbrial Diversity.

  • Yi Ren‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, causing cystitis, pyelonephritis, and renal failure. Uropathogenic Escherichia coli (UPEC) is the leading cause of UTIs. Accurate and rapid discrimination of UPEC lineages is useful for epidemiological surveillance. Fimbriae are necessary for the adherence of UPEC strains to host uroepithelia, and seem to be abundant and diverse in UPEC strains. By analyzing all the possible fimbrial operons in UPEC strains, we found that closely related strains had similar types of chaperone-usher fimbriae, and the diversity of fimbrial genes was higher than that of multilocus sequence typing (MLST) genes. A typing assay based on the polymorphism of four gene sequences (three fimbrial genes and one housekeeping gene) and the diversity of fimbriae present was developed. By comparison with the MLST, whole-genome sequence (WGS) and fumC/fimH typing methods, this was shown to be accurate and have high resolution, and it was also relatively inexpensive and easy to perform. The assay can supply more discriminatory information for UPEC lineages, and have the potential to be applied in epidemiological surveillance of UPEC isolates.


Curli of Uropathogenic Escherichia coli Enhance Urinary Tract Colonization as a Fitness Factor.

  • Víctor M Luna-Pineda‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Curli, a type of fimbriae widely distributed in uropathogenic Escherichia coli (UPEC), are involved in adhesion to human bladder cell surfaces and biofilm development. The role of UPEC curli was evaluated in a murine model of urinary tract infection. The aim of this study was to establish the role of curli in C57BL/6 mice transurethrally infected with curli-producing and non-curli-producing UPEC strains. We confirmed that curli enhanced UPEC colonization in the urinary tract, resulting in damage to both the bladder and kidney. Intranasal immunization with recombinant CsgA protein protected against colonization by curli-producing UPEC in the urinary tract. Quantification of cytokines from urinary tract organs showed increases in interleukin-6 and tumor necrosis factor (TNF) release in the kidneys 48 h postinfection with curli-producing UPEC. By contrast, mice infected with non-curli-producing UPEC showed the highest release of interleukin-6, -10, and -17A and TNF. Curli may obscure other fimbriae and LPS, preventing interactions with Toll-like receptors. When intranasal immunization with recombinant FimH and PapG proteins and subsequent infection with this strain were performed, cytokine quantification showed a decrease in the stimulation and release by the uroepithelium. Thus, curli are amyloid-like fimbriae that enhances colonization in the urinary tract and a possible fitness factor.


Comparative genomic analysis of uropathogenic Escherichia coli strains from women with recurrent urinary tract infection.

  • Marco A Flores-Oropeza‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

Recurrent urinary tract infections (RUTIs) caused by uropathogenic Escherichia coli are costly public health problems impacting patients' quality of life.


YciR, a Specific 3'-Phosphodiesterase, Plays a Role in the Pathogenesis of Uropathogenic Escherichia coli CFT073.

  • Si Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Urinary tract infections (UTIs), with the characteristics of recurrence and resistance to antibiotics due to misuse, remain a common health and economic issue for patients. Uropathogenic Escherichia coli (UPEC), which is capable of evading the immune response by forming intracellular bacterial communities (IBCs) in the cytoplasm of bladder epithelial cells (BECs) after invasion, has been shown to be the prevailing cause of UTIs. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small molecule responsible for eliciting the innate immune response of the host only if it has not been degraded by some phosphodiesterases (PDEs), such as YciR. The relationship between YciR and c-di-GMP levels in UPEC is inconclusive. In this study, we investigated the gene expression profile of UPEC in BECs and identified yciR as an upregulated gene. Western blot revealed that YciR enhanced the virulence of UPEC by inhibiting the phosphorylation of NF-κB. The expression of yciR could be repressed by HupB in a directly binding manner. We identified YciR, a novel PDE, and defined its possible function in innate immune evasion. We also demonstrated that YciR is an HupB-dependent PDE that degrades c-di-GMP and that a low concentration of c-di-GMP might make NF-κB less phosphorylated, thereby reducing the host's pro-inflammatory response. This is the first time that YciR has been identified as a virulence factor in the pathogenesis of UPEC. These findings further increase our understanding of the pathogenesis of UPEC and provide a theoretical basis for further studies.


Characterization and Bio-Typing of Multidrug Resistance Plasmids From Uropathogenic Escherichia coli Isolated From Clinical Setting.

  • Sandip Kumar Mukherjee‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Urinary tract infection is primarily caused by Escherichia coli. Multidrug resistance and their rapid dissemination in this pathogenic microbe complicate therapeutic strategies and threaten public health. Conjugation systems responsible for interbacterial transmission of antibiotic resistance are plasmid-encoded and can be classified as the P, F, and I types. Specific pili types and pili associated proteins were related to the transfer among this gram-negative organism and were thought to depend on contacts created by these structures at the time of DNA transport. In this study, conjugation system types of the plasmids that harbor multidrug resistant genes (aac-1b-cr, oqxAB, qnrB, qnrS, bla TEM, bla OXA) amongst 19 E. coli uropathogenic isolates were characterized under ciprofloxacin/ceftazidime selection individually by pili and pili associated gene types. Investigations indicated incidence of single plasmid of multiple replicon type amongst the transconjugants. bla TEM, bla CTX-M, bla OXA, aac-1b-cr, oqxAB, qnrB, qnrS genes in varied combination were observed to be successfully co-transmitted against ceftazidme/ciprofloxacin selection. Seven primer pair sets were selected that encodes pili and pili associated genes (traF, trwJ, traE, trhE, traG, pilM, pilx4) by nucleotide database search tools using annotated plasmids of different incompatibility types to assign the conjugation system type of the transmissible resistant plasmids by PCR. traF was predominant irrespective of drug selection that indicated F-type conjugation system was responsible for transmission of resistant plasmids which results in the rapid dissemination of antibiotic resistance in the isolates screened. Therefore this is a first report of its kind that investigated pili and pili associated genes to bio-type multidrug resistant plasmids and their transmission in clinical settings amongst uropathogenic E. coli circulated in the eastern part of India.


Multidrug Resistant Uropathogenic Escherichia coli ST405 With a Novel, Composite IS26 Transposon in a Unique Chromosomal Location.

  • Piklu Roy Chowdhury‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Escherichia coli ST405 is an emerging urosepsis pathogen, noted for carriage of bla CTX-M, bla NDM, and a repertoire of virulence genes comparable with O25b:H4-ST131. Extraintestinal and multidrug resistant E. coli ST405 are poorly studied in Australia. Here we determined the genome sequence of a uropathogenic, multiple drug resistant E. coli ST405 (strain 2009-27) from the mid-stream urine of a hospital patient in Sydney, Australia, using a combination of Illumina and SMRT sequencing. The genome of strain 2009-27 assembled into two unitigs; a chromosome comprising 5,287,472 bp and an IncB/O plasmid, pSDJ2009-27, of 89,176 bp. In silico and phenotypic analyses showed that strain 2009-27 is a serotype O102:H6, phylogroup D ST405 resistant to ampicillin, azithromycin, kanamycin, streptomycin, trimethoprim, and sulphafurazole. The genes encoding resistance to these antibiotics reside within a novel, mobile IS26-flanked transposon, identified here as Tn6242, in the chromosomal gene yjdA. Tn6242 comprises four modules that each carries resistance genes flanked by IS26, including a class 1 integron with dfrA17 and aadA5 gene cassettes, a variant of Tn6029, and mphA. We exploited unique genetic signatures located within Tn6242 to identify strains of ST405 from Danish patients that also carry the transposon in the same chromosomal location. The acquisition of Tn6242 into yjdA in ST405 is significant because it (i) is vertically inheritable; (ii) represents a reservoir of resistance genes that can transpose onto resident/circulating plasmids; and (iii) is a site for the capture of further IS26-associated resistance gene cargo.


Antimicrobial Potential of Carvacrol against Uropathogenic Escherichia coli via Membrane Disruption, Depolarization, and Reactive Oxygen Species Generation.

  • Imran Khan‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Bacterial resistance to antibiotics poses a serious threat to cure diseases associated with microbial infection. Among the resistant bacteria, extended-spectrum β-lactamase (ESBL)-producing bacteria are the most concerned one as they encode the enzyme β-lactamase that confers resistance to most β-lactam antibiotics. The present study was carried out to determine the antimicrobial potential and the principle mechanism of action of carvacrol against ESBL Escherichia coli isolated from ascitic fluid of a patient having a urinary tract infection. Carvacrol exhibited a minimum inhibitory concentration (MIC) of 450 μg/ml at which it reduced E. coli cell counts significantly in a time-dependent manner. Carvacrol completely diminished the growth of E. coli after 2 h of incubation at its MIC. Fluorescent imaging displayed the elevated reactive oxygen species level and bacterial membrane depolarization leading to E. coli cell death in presence of carvacrol at its MIC. Furthermore, carvacrol displayed a severe detrimental effect on bacterial membrane disruption and cellular material release. In addition, a significant effect of carvacrol at sub-inhibitory concentration was observed on motility of E. coli cells and invasion of human colon HCT-116 cells in an ex vivo model. Based on the results, we conclude a potential antimicrobial role of carvacrol against ESBL E. coli.


Peptidoglycan Endopeptidase Spr of Uropathogenic Escherichia coli Contributes to Kidney Infections and Competitive Fitness During Bladder Colonization.

  • Wen-Chun Huang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Uropathogenic E scherichia coli (UPEC) is the most common pathogen of urinary tract infections (UTIs). Antibiotic therapy is the conventional measure to manage such infections. However, the rapid emergence of antibiotic resistance has reduced the efficacy of antibiotic treatment. Given that the bacterial factors required for the full virulence of the pathogens are potential therapeutic targets, identifying such factors may facilitate the development of novel therapeutic strategies against UPEC UTIs. The peptidoglycan (PG) endopeptidase Spr (also named MepS) is required for PG biogenesis in E. coli. In the present study, we found that Spr deficiency attenuated the ability of UPEC to infect kidneys and induced a fitness defect during bladder colonization in a mouse model of UTI. Based on the liquid chromatography (LC)/mass spectrometry (MS)/MS analysis of the bacterial envelope, spr deletion changed the levels of some envelope-associated proteins, suggesting that Spr deficiency interfere with the components of the bacterial structure. Among the proteins, FliC was significantly downregulated in the spr mutant, which is resulted in reduced motility. Lack of Spr might hinder the function of the flagellar transcriptional factor FlhDC to decrease FliC expression. The motility downregulation contributed to the reduced fitness in urinary tract colonization. Additionally, spr deletion compromised the ability of UPEC to evade complement-mediated attack and to resist intracellular killing of phagocytes, consequently decreasing UPEC bloodstream survival. Spr deficiency also interfered with the UPEC morphological switch from bacillary to filamentous shapes during UTI. It is known that bacterial filamentation protects UPEC from phagocytosis by phagocytes. In conclusion, Spr deficiency was shown to compromise multiple virulence properties of UPEC, leading to attenuation of the pathogen in urinary tract colonization and bloodstream survival. These findings indicate that Spr is a potential antimicrobial target for further studies attempting to develop novel strategies in managing UPEC UTIs.


Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in Uropathogenic Escherichia coli.

  • Wentong Cai‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032-c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo. Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli, while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the -35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo conditions. Therefore, different transcriptional regulation led to distinct roles played by C5038 and KgtP in KG utilization and fitness in vivo. This study thus potentially expanded our understanding of UPEC pathobiology.


Small Non-coding RNA RyhB Mediates Persistence to Multiple Antibiotics and Stresses in Uropathogenic Escherichia coli by Reducing Cellular Metabolism.

  • Shanshan Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

As dormant phenotypic variants of bacteria, persisters account for many chronic infections affecting human health. Despite numerous studies, the role of small non-coding RNA (sRNA) in bacterial persistence has not been reported. To investigate the role of Hfq-interacting sRNA in persistence, we constructed the deletion mutants of 20 Hfq-interacting sRNAs (RyhB, GcvB, MgrR, RybB, MicF, SgrS, RprA, DicF, SsrS, FnrS, GadY, DsrA, OmrB, ArcZ, RyeB, RydC, OmrA, MicA, MicC, and ChiX) to assess their persistence capacity in uropathogenic Escherichia coli strain UTI89 and identified a new sRNA RyhB being involved in persister formation. The ryhB-knockout mutant had significant defect in persistence to a diverse range of antibiotics (levofloxacin, cefotaxime, gentamicin) and stresses (hyperosmosis, acid, and heat) in both exponential phase and stationary phase. In addition, the effect of RyhB on persistence was synergistic with ppGpp and Fur protein. RNA-Seq analysis indicated that the ryhB-knockout mutant had a hyperactive metabolic state compared with the parent strain. Interestingly, increased adenosine triphosphate (ATP) levels and altered NAD+/NADH ratios were observed in the ryhB-knockout mutant. Our findings represent a new level of persistence regulation via sRNA and may provide novel therapeutic targets for interventions.


Multidrug- and Extensively Drug-Resistant Uropathogenic Escherichia coli Clinical Strains: Phylogenetic Groups Widely Associated with Integrons Maintain High Genetic Diversity.

  • Sara A Ochoa‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

In recent years, an increase of uropathogenic Escherichia coli (UPEC) strains with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that complicate therapy for urinary tract infections (UTIs) has been observed and has directly impacted costs and extended hospital stays. The aim of this study was to determine MDR- and XDR-UPEC clinical strains, their virulence genes, their phylogenetic groups and to ascertain their relationship with integrons and genetic diversity. From a collection of 500 UPEC strains, 103 were selected with MDR and XDR characteristics. MDR-UPEC strains were mainly associated with phylogenetic groups D (54.87%) and B2 (39.02%) with a high percentage (≥70%) of several fimbrial genes (ecpA, fimH, csgA, and papGII), an iron uptake gene (chuA), and a toxin gene (hlyA). In addition, a moderate frequency (40-70%) of other genes (iutD, tosA, and bcsA) was observed. XDR-UPEC strains were predominantly associated with phylogenetic groups B2 (47.61%) and D (42.85%), which grouped with ≥80 virulence genes, including ecpA, fimH, csgA, papGII, iutD, and chuA. A moderate frequency (40-70%) of the tosA and hlyA genes was observed. The class 1 and 2 integrons that were identified in the MDR- and XDR-UPEC strains were associated with phylogenetic groups D, B2, and A, while the XDR-UPEC strains that were associated with phylogenetic groups B2, D, and A showed an extended-spectrum beta-lactamase (ESBL) phenotype. The modifying enzymes (aadA1, aadB, aacC, ant1, dfrA1, dfrA17, and aadA4) that were identified in the variable region of class 1 and 2 integrons from the MDR strains showed resistance to gentamycin (56.25 and 66.66%, respectively) and trimethoprim-sulfamethoxazole (84.61 and 66.66%, respectively). The MDR- and XDR-UPEC strains were distributed into seven clusters and were closely related to phylogenic groups B2 and D. The diversity analysis by PFGE showed 42.68% of clones of MDR-UPEC and no clonal association in the XDR-UPEC strains. In conclusion, phylogenetic groups including virulence genes are widely associated with two integron classes (1 and 2) in MDR- and XDR-UPEC strains.


Cranberry, but not D-mannose and ibuprofen, prevents against uropathogenic Escherichia coli-induced cell damage and cell death in MDCK cells.

  • Jenane Konesan‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

The main function of the urinary tract is to form an impermeable barrier against urinary solutes and bacteria. However, this barrier can be compromised by urinary tract infections, most commonly caused by uropathogenic Escherichia coli (UPEC). This can result in damage to the epithelial barrier, leading to decreased epithelial thickness, loss of tight junctions, loss of epithelial integrity, and apoptosis. Due to the rise in antimicrobial resistance, there is worldwide interest in exploring non-antibiotic agents as alternative therapy.


Transcriptomic and Metabolomic Profiling Reveals That KguR Broadly Impacts the Physiology of Uropathogenic Escherichia coli Under in vivo Relevant Conditions.

  • Dawei Yang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Urinary tract infections are primarily caused by uropathogenic Escherichia coli (UPEC). In contrast to the intestinal E. coli strains that reside in nutrient-rich gut environment, UPEC encounter distinct niches, for instance human urine, which is an oxygen- and nutrient-limited environment. Alpha-ketoglutarate (KG) is an abundant metabolite in renal proximal tubule cells; and previously we showed that two-component signaling system (TCS) KguS/KguR contributes to UPEC colonization of murine urinary tract by promoting the utilization of KG as a carbon source under anaerobic conditions. However, knowledge about the KguR regulon and its impact on UPEC fitness is lacking. In this work, we analyzed transcriptomic and metabolomic changes caused by kguR deletion under anaerobiosis when KG is present. Our results indicated that 620 genes were differentially expressed in the ΔkguR mutant, as compared to the wild type; of these genes, 513 genes were downregulated and 107 genes were upregulated. Genes with substantial changes in expression involve KG utilization, acid resistance, iron uptake, amino acid metabolism, capsule biosynthesis, sulfur metabolism, among others. In line with the transcriptomics data, several amino acids (glutamate, lysine, etc.) and uridine 5'-diphosphogalactose (involved in capsule biosynthesis) were significantly less abundant in the ΔkguR mutant. We then confirmed that the ΔkguR mutant, indeed, was more sensitive to acid stress than the wild type, presumably due to downregulation of genes belonging to the glutamate-dependent acid resistance system. Furthermore, using gene expression and electrophoretic mobility shift assays (EMSAs), we demonstrate that KguR autoregulates its own expression by binding to the kguSR promoter region. Lastly, we performed a genome-wide search of KguR binding sites, and this search yielded an output of at least 22 potential binding sites. Taken together, our data establish that in the presence of KG, KguR broadly impacts the physiology of UPEC under anaerobiosis. These findings greatly further our understanding of KguS/KguR system as well as UPEC pathobiology.


Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and Acts as a Fitness Factor During Experimental Urinary Tract Infection.

  • Alberto J Martín-Rodríguez‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

To successfully colonize a variety of environments, bacteria can coordinate complex collective behaviors such as biofilm formation. To thrive in oxygen limited niches, bacteria's versatile physiology enables the utilization of alternative electron acceptors. Nitrate, the second most favorable electron acceptor after oxygen, plays a prominent role in the physiology of uropathogenic Escherichia coli (UPEC) and is abundantly found in urine. Here we analyzed the role of extracellular nitrate in the pathogenesis of the UPEC strain CFT073 with an initial focus on biofilm formation. Colony morphotyping in combination with extensive mutational, transcriptional, and protein expression analyses of CFT073 wild-type and mutants deficient in one or several nitrate reductases revealed an association between nitrate reduction and the biosynthesis of biofilm extracellular matrix components. We identified a role for the nitrate response regulator NarL in modulating expression of the biofilm master regulator CsgD. To analyze the role of nitrate reduction during infection in vivo, we tested wild-type CFT073 and a nitrate reductase null mutant in an ascending urinary tract infection (UTI) model. Individually, each strain colonized extensively, suggesting that nitrate reduction is expendable during UTI. However, during competitive co-infection, the strain incapable of nitrate reduction was strongly outcompeted. This suggests that nitrate reduction can be considered a non-essential but advantageous fitness factor for UPEC pathogenesis. This implies that UPEC rapidly adapts their metabolic needs to the microenvironment of infected tissue. Collectively, this work demonstrates a unique association between nitrate respiration, biofilm formation, and UPEC pathogenicity, highlighting how the use of alternative electron acceptors enables bacterial pathogens to adapt to challenging infectious microenvironments.


Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL)-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics.

  • Isak Demirel‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC) but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL)-producing UPEC (ESBL019) during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array). All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.


Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

  • Christopher H Sommers‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.


Involvement of NLRP3 and NLRC4 Inflammasome in Uropathogenic E. coli Mediated Urinary Tract Infections.

  • Vivek Verma‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Inflammatory response during urinary tract infection (UTI) is mediated by innate immune defense. Nod like receptors (NLRs) have been proposed to work simultaneously beside TLR pathways to mediate pro-inflammatory response and maintain tissue homeostasis. Some in vitro reports have showed the involvement of NLRP3 inflammasome during uropathogenic Escherichia coli (UPEC) mediated UTI. So we have sought to determine the status of various inflammasomes and their components in UPEC mediated UTI.


The Tol-Pal System of Uropathogenic Escherichia coli Is Responsible for Optimal Internalization Into and Aggregation Within Bladder Epithelial Cells, Colonization of the Urinary Tract of Mice, and Bacterial Motility.

  • Hidetada Hirakawa‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Urinary tracts infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a common infectious disease. With the shortage of new antimicrobial agents, the increase in UPEC resistance to commonly used drugs, such as fluoroquinolones and β-lactams including carbapenems is a critical issue. UPEC invades urinary tract cells, where it aggregates, and subsequently, forms biofilm-like multicellular colonies termed intracellular bacterial communities (IBCs). This process allows the bacteria to establish infections and so may be a good potential target for new drugs to treat infections. Here, we show that deletion of the tolB gene, encoding a protein of the Tol-Pal system that was originally characterized as a protein complex for colicin uptake and maintenance of the outer membrane, decreases the level of bacterial internalization into and aggregation within cultured bladder epithelial cells and also inhibits the colonization of mice urinary tracts. The tolB mutant also exhibited defective motility because of impaired flagellum syntheses. The fliC and motA mutants, which are non-motile strains, also exhibited lower levels of bacterial internalization and aggregation than their wild-type parent. Additional deletion of tolB in the fliC mutant did not further decrease these, suggesting that the attenuated virulence of the tolB mutant is a result of defective motility. The tolA, tolQ, tolR, and pal mutants that lack other members of the Tol-Pal system also exhibited lower levels of motility and aggregation within bladder epithelial cells compared to their wild-type parent. These combined results suggest another role of the Tol-Pal system, i.e., that it is responsible for optimal internalization, aggregation followed by IBC formation within urinary tract cells, and bacterial motility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: