Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A High-resolution Typing Assay for Uropathogenic Escherichia coli Based on Fimbrial Diversity.

Frontiers in microbiology | 2016

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, causing cystitis, pyelonephritis, and renal failure. Uropathogenic Escherichia coli (UPEC) is the leading cause of UTIs. Accurate and rapid discrimination of UPEC lineages is useful for epidemiological surveillance. Fimbriae are necessary for the adherence of UPEC strains to host uroepithelia, and seem to be abundant and diverse in UPEC strains. By analyzing all the possible fimbrial operons in UPEC strains, we found that closely related strains had similar types of chaperone-usher fimbriae, and the diversity of fimbrial genes was higher than that of multilocus sequence typing (MLST) genes. A typing assay based on the polymorphism of four gene sequences (three fimbrial genes and one housekeeping gene) and the diversity of fimbriae present was developed. By comparison with the MLST, whole-genome sequence (WGS) and fumC/fimH typing methods, this was shown to be accurate and have high resolution, and it was also relatively inexpensive and easy to perform. The assay can supply more discriminatory information for UPEC lineages, and have the potential to be applied in epidemiological surveillance of UPEC isolates.

Pubmed ID: 27199951 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

Glimmer (tool)

RRID:SCR_011931

A software system for finding genes in microbial DNA, especially the genomes of bacteria, archaea, and viruses.

View all literature mentions