Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus.

  • Sofia Blazevic‎ et al.
  • PloS one‎
  • 2017‎

We tested the hypothesis that gestational diabetes mellitus (GDM) alters the DNA methylation pattern of the fetal serotonin transporter gene (SLC6A4), and examined the functional relevance of DNA methylation for regulation of the SLC6A4 expression in the human placenta. The study included 50 mother-infant pairs. Eighteen mothers were diagnosed with GDM and 32 had normal glucose tolerance (NGT). All neonates were of normal birth weight and born at term by planned Cesarean section. DNA and RNA were isolated from samples of tissue collected from the fetal side of the placenta immediately after delivery. DNA methylation was quantified at 7 CpG sites within the SLC6A4 distal promoter region using PCR amplification of bisulfite treated DNA and subsequent DNA sequencing. SLC6A4 mRNA levels were measured by reverse transcription-quantitative PCR (RT-qPCR). Functional SLC6A4 polymorphisms (5HTTLPR, STin2, rs25531) were genotyped using standard PCR-based procedures. Average DNA methylation across the 7 analyzed loci was decreased in the GDM as compared to the NGT group (by 27.1%, p = 0.037) and negatively correlated, before and after adjustment for potential confounder/s, with maternal plasma glucose levels at the 24th to 28th week of gestation (p<0.05). Placental SLC6A4 mRNA levels were inversely correlated with average DNA methylation (p = 0.010) while no statistically significant association was found with the SLC6A4 genotypes (p>0.05). The results suggest that DNA methylation of the fetal SLC6A4 gene is sensitive to the maternal metabolic state in pregnancy. They also indicate a predominant role of epigenetic over genetic mechanisms in the regulation of SLC6A4 expression in the human placenta. Longitudinal studies in larger cohorts are needed to verify these results and determine to which degree placental SLC6A4 changes may contribute to long-term outcomes of infants exposed to GDM.


Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

  • Sofie Bruun Hartmann‎ et al.
  • PloS one‎
  • 2016‎

In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.


Biocompatibility of Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants.

  • Anna Fahlgren‎ et al.
  • PloS one‎
  • 2015‎

Polypyrrole (PPy) is a conducting polymer that enables controlled drug release upon electrical stimulation. We characterized the biocompatibility of PPy with human primary osteoblasts, and the effect of dopants. We investigated the biocompatibility of PPy comprising various dopants, i.e. p-toluene sulfonate (PPy-pTS), chondroitin sulfate (PPy-CS), or dodecylbenzenesulfonate (PPy-DBS), with human primary osteoblasts. PPy-DBS showed the roughest appearance of all surfaces tested, and its wettability was similar to the gold-coated control. The average number of attached cells was 45% higher on PPy-DBS than on PPy-CS or PPy-pTS, although gene expression of the proliferation marker Ki-67 was similar in osteoblasts on all surfaces tested. Osteoblasts seeded on PPy-DBS or gold showed similar vinculin attachment points, vinculin area per cell area, actin filament structure, and Feret's diameter, while cells seeded on PPY-CS or PPY-pTS showed disturbed focal adhesions and were enlarged with disorganized actin filaments. Osteoblasts grown on PPy-DBS or gold showed enhanced alkaline phosphatase activity and osteocalcin gene expression, but reduced osteopontin gene expression compared to cells grown on PPy-pTS and PPy-CS. In conclusion, PPy doped with DBS showed excellent biocompatibility, which resulted in maintaining focal adhesions, cell morphology, cell number, alkaline phosphatase activity, and osteocalcin gene expression. Taken together, conducting polymers doped with DBS are well tolerated by osteoblasts. Our results could provide a basis for the development of novel orthopedic or dental implants with controlled release of antibiotics and pharmaceutics that fight infections or focally enhance bone formation in a tightly controlled manner.


IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs.

  • Louise Brogaard‎ et al.
  • PloS one‎
  • 2018‎

The innate immune system is paramount in the response to and clearance of influenza A virus (IAV) infection in non-immune individuals. Known factors include type I and III interferons and antiviral pathogen recognition receptors, and the cascades of antiviral and pro- and anti-inflammatory gene expression they induce. MicroRNAs (miRNAs) are increasingly recognized to participate in post-transcriptional modulation of these responses, but the temporal dynamics of how these players of the antiviral innate immune response collaborate to combat infection remain poorly characterized. We quantified the expression of miRNAs and protein coding genes in the lungs of pigs 1, 3, and 14 days after challenge with swine IAV (H1N2). Through RT-qPCR we observed a 400-fold relative increase in IFN-λ3 gene expression on day 1 after challenge, and a strong interferon-mediated antiviral response was observed on days 1 and 3 accompanied by up-regulation of genes related to the pro-inflammatory response and apoptosis. Using small RNA sequencing and qPCR validation we found 27 miRNAs that were differentially expressed after challenge, with the highest number of regulated miRNAs observed on day 3. In contrast, the number of protein coding genes found to be regulated due to IAV infection peaked on day 1. Pulmonary miRNAs may thus be aimed at fine-tuning the initial rapid inflammatory response after IAV infection. Specifically, we found five miRNAs (ssc-miR-15a, ssc-miR-18a, ssc-miR-21, ssc-miR-29b, and hsa-miR-590-3p)-four known porcine miRNAs and one novel porcine miRNA candidate-to be potential modulators of viral pathogen recognition and apoptosis. A total of 11 miRNAs remained differentially expressed 14 days after challenge, at which point the infection had cleared. In conclusion, the results suggested a role for miRNAs both during acute infection as well as later, with the potential to influence lung homeostasis and susceptibility to secondary infections in the lungs of pigs after IAV infection.


Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats.

  • Mukesh Raipuria‎ et al.
  • PloS one‎
  • 2015‎

Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.


High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection.

  • Danielle N Meadows‎ et al.
  • PloS one‎
  • 2015‎

Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.


Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture.

  • Cornelis P L Paul‎ et al.
  • PloS one‎
  • 2012‎

Low-back pain (LBP) is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD) is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions.In order to study mechanical loading effects, degeneration-associated processes and/or potential regenerative therapies in IVDs, it is imperative to maintain the IVDs' structural integrity. While in vivo models provide comprehensive insight in IVD biology, an accompanying organ culture model can focus on a single factor, such as loading and may serve as a prescreening model to reduce life animal testing. In the current study we examined the feasibility of organ culture of caprine lumbar discs, with the hypothesis that a simulated-physiological load will optimally preserve IVD properties.Lumbar caprine IVDs (n = 175) were cultured in a bioreactor up to 21 days either without load, low dynamic load (LDL), or with simulated-physiological load (SPL). IVD stiffness was calculated from measurements of IVD loading and displacement. IVD nucleus, inner- and outer annulus were assessed for cell viability, cell density and gene expression. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and total collagen content.IVD biomechanical properties did not change significantly with loading conditions. With SPL, cell viability, cell density and gene expression were preserved up to 21 days. Both unloaded and LDL resulted in decreased cell viability, cell density and significant changes in gene expression, yet no differences in ECM content were observed in any group.In conclusion, simulated-physiological loading preserved the native properties of caprine IVDs during a 21-day culture period. The characterization of caprine IVD response to culture in the LDCS under SPL conditions paves the way for controlled analysis of degeneration- and regeneration-associated processes in the future.


Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis.

  • Tatjana Arsenijevic‎ et al.
  • PloS one‎
  • 2012‎

Analysis of gene expression at the mRNA level, using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), mandatorily requires reference genes (RGs) as internal controls. However, increasing evidences have shown that RG expression may vary considerably under experimental conditions. We sought for an appropriate panel of RGs to be used in the 3T3-L1 cell line model during their terminal differentiation into adipocytes. To this end, the expression levels of a panel of seven widely used RG mRNAs were measured by qRT-PCR. The 7 RGs evaluated were ß-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl-transferase I (HPRT), ATP synthase H+ transporting mitochondrial F1 complex beta subunit (ATP-5b), tyrosine 3-monooxygenase/tryptophan 5- monooxygenase activation protein, zeta polypeptide (Ywhaz), Non-POU-domain containing octamer binding protein (NoNo), and large ribosomal protein L13a (RPL).


Bioinformatics Analysis of the Effects of Tobacco Smoke on Gene Expression.

  • Chunhua Cao‎ et al.
  • PloS one‎
  • 2015‎

This study was designed to explore the effects of tobacco smoke on gene expression through bioinformatics analyses. Gene expression profile GSE17913 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in buccal mucosa tissues between 39 active smokers and 40 never smokers were identified. Gene Ontology Specifically, the DEG distribution in the pathway of Metabolism of xenobiotics by cytochrome P450 was shown in Fig 2[corrected] were performed, followed by protein-protein interaction (PPI) network, transcriptional regulatory network as well as miRNA-target regulatory network construction. In total, 88 up-regulated DEGs and 106 down-regulated DEGs were identified. Among these DEGs, cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and CYP1B1 were enriched in the Metabolism of xenobiotics by cytochrome P450 pathway. In the PPI network, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), and CYP1A1 were hub genes. In the transcriptional regulatory network, transcription factors of MYC associated factor X (MAX) and upstream transcription factor 1 (USF1) regulated many overlapped DEGs. In addition, protein tyrosine phosphatase, receptor type, D (PTPRD) was regulated by multiple miRNAs in the miRNA-DEG regulatory network. CYP1A1, CYP1B1, YWHAZ and PTPRD, and TF of MAX and USF1 may have the potential to be used as biomarkers and therapeutic targets in tobacco smoke-related pathological changes.


Profiles of pro-opiomelanocortin and encoded peptides, and their processing enzymes in equine pituitary pars intermedia dysfunction.

  • James L Carmalt‎ et al.
  • PloS one‎
  • 2018‎

Equine pituitary pars intermedia dysfunction (PPID) is characterized by hyperplasia of the pars intermedia (PI) melanotrophs of the pituitary gland (PG), and increased production of proopiomelanocortin (POMC). POMC is cleaved by prohormone convertase 1 (PC1) to produce adrenocorticotropic hormone (ACTH), and further processing of ACTH by PC2 to produce alpha-melanocyte stimulating hormone (α-MSH) and corticotropin-like intermediate peptide (CLIP). High plasma ACTH concentrations in horses with PPID might be related to reduced conversion of ACTH to α-MSH by PCs. The hypothesis of this study was that PC1 and PC2 expression in the pituitary gland are altered in PPID, resulting in an abnormal relative abundance of POMC derived proteins. The objectives of this study were to identify the partial sequences of equine POMC, PC1, and PC2 mRNAs; and to determine whether the expression of POMC, PC1, and PC2 mRNAs in whole pituitary extracts, and POMC-protein in the cavernous sinus blood of horses are altered in PPID. We confirmed (RT-PCR and sequencing) that the partial sequences obtained match the corresponding regions of predicted equine POMC, PC1 and PC2 sequences. The expression (quantification by RT-qPCR) of POMC, PC1 and PC2 mRNAs were found upregulated in the pituitary of horses with PPID. Plasma (measured using RIA/ELISA) ACTH and α-MSH were elevated in PPID horses. These results indicate distinct differences in gene and protein expression of POMC and its intermediates, and processing enzymes in PPID. It provides evidence to support the notion that local, pituitary-specific inadequacies in prohormone processing likely contribute to equine PPID.


Identification of suitable reference genes for real-time PCR analysis of statin-treated human umbilical vein endothelial cells.

  • Barbara Żyżyńska-Granica‎ et al.
  • PloS one‎
  • 2012‎

Proper data normalization in quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) is of critical importance for reliable mRNA expression analysis. Due to a diversity in putative reference genes expression stability in different in vitro models, a validation of an internal control gene should be made for each particular tissue or cell type and every specific experimental design. A few approaches have been proposed for reference gene selection, including pair-wise comparison approach and model-based approach. In this article we have assessed the expression stability of eight putative reference genes: ACTB, B2M, GADD45A, GAPDH, HPRT1, PES1, PSMC4, YWHAZ, in human umbilical vein endothelial cells (HUVEC) treated with different statins and with TNF-α. The analysis was performed with three reference gene validation programs: geNorm, NormFinder and BestKeeper. We have shown that hypoxanthine phosphoribosyltransferase 1 gene (HPRT1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide gene (YWHAZ) are the most stably expressed genes among the analyzed ones. Furthermore, our results show that β-actin gene (ACTB) is downregulated by statins and thus should not be used as a normalizing gene in a discussed experimental setup. A ranking of candidate reference genes stability values is provided and might serve as a valuable guide for future gene expression studies in endothelial cells. This is the first report on reference gene selection for RT-qPCR applications in statin-treated HUVEC model.


Identification and Validation of Housekeeping Genes for Gene Expression Analysis of Cancer Stem Cells.

  • Silvia Lemma‎ et al.
  • PloS one‎
  • 2016‎

The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.


Effects of glyphosate residues and different concentrate feed proportions in dairy cow rations on hepatic gene expression, liver histology and biochemical blood parameters.

  • Ann-Katrin Heymann‎ et al.
  • PloS one‎
  • 2021‎

Glyphosate (GLY) is worldwide one of the most used active substances in non-selective herbicides. Although livestock might be orally exposed via GLY-contaminated feedstuffs, not much is known about possible hepatotoxic effects of GLY. As hepatic xenobiotic and nutrient metabolism are interlinked, toxic effects of GLY residues might be influenced by hepatic nutrient supply. Therefore, a feeding trial with lactating dairy cows was conducted to investigate effects of GLY-contaminated feedstuffs and different concentrate feed proportions (CFP) in the diets as tool for varying nutrient supply to the liver. For this, 61 German Holstein cows (207 ± 49 days in milk; mean ± standard deviation) were either fed a GLY-contaminated total mixed ration (TMR, GLY groups, mean GLY intake 122.7 μg/kg body weight/day) or control TMR (CON groups, mean GLY intake 1.2 μg/kg body weight/day) for 16 weeks. Additionally, both groups were further split into subgroups fed a lower (LC, 30% on dry matter basis) or higher (HC, 60% on dry matter basis) CFP resulting in groups CONHC (n = 16), CONLC (n = 16), GLYHC (n = 15), GLYLC (n = 14). Blood parameters aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, cholesterol, triglyceride, total protein, calcium, phosphorus, acetic acid and urea and histopathological evaluation were not influenced by GLY, whereas all mentioned parameters were at least affected by time, CFP or an interactive manner between time and CFP. Total bilirubin blood concentration was significantly influenced by an interaction between GLY and CFP with temporarily elevated concentrations in GLYHC, whereas the biological relevance remained unclear. Gene expression analysis indicated 167 CFP-responsive genes, while seven genes showed altered expression in GLY groups compared to CON groups. Since expression changes of GLY-responsive genes were low and liver-related blood parameters changed either not at all or only slightly, the tested GLY formulation was considered to have no toxic effects on the liver of dairy cows.


Differential gene expression in the brain of the African lungfish, Protopterus annectens, after six days or six months of aestivation in air.

  • Kum C Hiong‎ et al.
  • PloS one‎
  • 2013‎

The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the brain of P. annectens during the induction (6 days) and maintenance (6 months) phases of aestivation as compared with the freshwater control using suppression subtractive hybridization. During the induction phase of aestivation, the mRNA expression of prolactin (prl) and growth hormone were up-regulated in the brain of P. annectens, which indicate for the first time the possible induction role of these two hormones in aestivation. Also, the up-regulation of mRNA expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein γ polypeptide and the down-regulation of phosphatidylethanolamine binding protein, suggest that there could be a reduction in biological and neuronal activities in the brain. The mRNA expression of cold inducible RNA-binding protein and glucose regulated protein 58 were also up-regulated in the brain, probably to enhance their cytoprotective effects. Furthermore, the down-regulation of prothymosin α expression suggests that there could be a suppression of transcription and cell proliferation in preparation for the maintenance phase. In general, the induction phase appeared to be characterized by reduction in glycolytic capacity and metabolic activity, suppression of protein synthesis and degradation, and an increase in defense against ammonia toxicity. In contrast, there was a down-regulation in the mRNA expression of prl in the brain of P. annectens during the maintenance phase of aestivation. In addition, there could be an increase in oxidative defense capacity, and up-regulation of transcription, translation, and glycolytic capacities in preparation for arousal. Overall, our results signify the importance of reconstruction of protein structures and regulation of energy expenditure during the induction phase, and the needs to suppress protein degradation and conserve metabolic fuel stores during the maintenance phase of aestivation.


Transcriptomic Changes Associated with Pregnancy in a Marsupial, the Gray Short-Tailed Opossum Monodelphis domestica.

  • Victoria Leigh Hansen‎ et al.
  • PloS one‎
  • 2016‎

Live birth has emerged as a reproductive strategy many times across vertebrate evolution; however, mammals account for the majority of viviparous vertebrates. Marsupials are a mammalian lineage that last shared a common ancestor with eutherians (placental mammals) over 148 million years ago. Marsupials are noted for giving birth to highly altricial young after a short gestation, and represent humans' most distant viviparous mammalian relatives. Here we ask what insight can be gained into the evolution of viviparity in mammals specifically and vertebrates in general by analyzing the global uterine transcriptome in a marsupial. Transcriptome analyses were performed using NextGen sequencing of uterine RNA samples from the gray short-tailed opossum, Monodelphis domestica. Samples were collected from late stage pregnant, virgin, and non-pregnant experienced breeders. Three different algorithms were used to determine differential expression, and results were confirmed by quantitative PCR. Over 900 opossum gene transcripts were found to be significantly more abundant in the pregnant uterus than non-pregnant, and over 1400 less so. Most with increased abundance were genes related to metabolism, immune systems processes, and transport. This is the first study to characterize the transcriptomic differences between pregnant, non-pregnant breeders, and virgin marsupial uteruses and helps to establish a set of pregnancy-associated genes in the opossum. These observations allowed for comparative analyses of the differentially transcribed genes with other mammalian and non-mammalian viviparous species, revealing similarities in pregnancy related gene expression over 300 million years of amniote evolution.


Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs.

  • Cornelis P L Paul‎ et al.
  • PloS one‎
  • 2013‎

Mechanical overloading of the spine is associated with low back pain and intervertebral disc (IVD) degeneration. How excessive loading elicits degenerative changes in the IVD is poorly understood. Comprehensive knowledge of the interaction between mechanical loading, cell responses and changes in the extracellular matrix of the disc is needed in order to successfully intervene in this process. The purpose of the current study was to investigate whether dynamic and static overloading affect caprine lumbar discs differently and what mechanisms lead to mechanically induced IVD degeneration. Lumbar caprine IVDs (n = 175) were cultured 7, 14 and 21 days under simulated-physiological loading (control), high dynamic or high static loading. Axial deformation and stiffness were continuously measured. Cell viability, cell density, and gene expression were assessed in the nucleus, inner- and outer annulus. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and collagen content. IVD height loss and changes in axial deformation were gradual with dynamic and acute with static overloading. Dynamic overloading caused cell death in all IVD regions, whereas static overloading mostly affected the outer annulus. IVDs expression of catabolic and inflammation-related genes was up-regulated directly, whereas loss of water and glycosaminoglycan were significant only after 21 days. Static and dynamic overloading both induced pathological changes to caprine lumbar IVDs within 21 days. The mechanism by which they inflict biomechanical, cellular, and extracellular changes to the nucleus and annulus differed. The described cascades provide leads for the development of new pharmacological and rehabilitative therapies to halt the progression of DDD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: