2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Identification and Validation of Housekeeping Genes for Gene Expression Analysis of Cancer Stem Cells.

PloS one | 2016

The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.

Pubmed ID: 26894994 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

NormFinder (tool)

RRID:SCR_003387

Software for identifying the optimal normalization gene among a set of candidates. It ranks the set of candidate normalization genes according to their expression stability in a given sample set and given experimental design. It can analyze expression data obtained through any quantitative method e.g. real time RT-PCR and microarray based expression analysis. NormFinder.xla adds the NormFinder functionality directly to Excel. A version for R is also available.

View all literature mentions

geNORM (tool)

RRID:SCR_006763

Software to determine most stable reference (housekeeping) genes from set of tested candidate reference genes in given sample panel. From this, gene expression normalization factor can be calculated for each sample based geometric mean of user-defined number of reference genes.

View all literature mentions

Biogazelle (tool)

RRID:SCR_012617

At Biogazelle, we are dedicated to accelerate the understanding of the transcriptome through excellence in science and technology. We are convinced that unravelling the coding and non-coding regions of the genome will help researchers, clinicians, plant breeders, and other actors of the scientific community to get better answers to their questions. It is our mission to develop data-analysis software tools, and to carefully select the best analytical platforms to offer customized RNA gene expression services. Our service lab activities support the life science market at every level of the entire process: from discovery to validation of biomarkers, from optimal experiment design to extensive analysis and interpretation of results, from PCR assay design to research-use-only kits. We are a young and dynamic company, eager to learn and to teach. Our continuous research, solid track record, and worldwide network keep Biogazelle at the forefront of new developments, making new instruments and cutting edge technologies accessible to all our customers. Each project is handled by experts and is fully customized to suit the objectives of the project and to accommodate specific requirements. The service portfolio ranges from sample preparation to data analysis using rigorous MIQE compliant procedures, high-throughput and validated laboratory methods, qbase+ data analysis software, and state-of-the-art analytical tools.

View all literature mentions

ProbeFinder (tool)

RRID:SCR_014490

A software for primer design. The user can choose the target sequence or gene and design primers for the real-time PCR. After, the user can examine the results and choose from the recommended probes.

View all literature mentions

MG-63 (tool)

RRID:CVCL_0426

Cell line MG-63 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

ACHN (tool)

RRID:CVCL_1067

Cell line ACHN is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MDA-MB-231 (tool)

RRID:CVCL_0062

Cell line MDA-MB-231 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions