Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

miR-3648 promotes lung adenocarcinoma-genesis by inhibiting SOCS2 (suppressor of cytokine signaling 2).

  • Yanhong Tu‎ et al.
  • Bioengineered‎
  • 2022‎

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and is associated with high morbidity and mortality. We aimed to study the effects of microRNA-3648 (miR-3648) on LUAD by inhibiting its downstream target suppressor of cytokine signaling 2 (SOCS2) mRNA. miR-3648 expression was measured by real-time quantitative PCR in LUAD and normal lung epithelial cell lines. The direct interaction between miR-3648 and SOCS2 mRNA was identified through luciferase reporter and RNA pull-down assays. Cell viability, migration, and invasion were examined using cell functional assays. MiR-3648 was found to be overexpressed in LUAD cells and tissues. Overexpression of miR-3648 significantly enhanced cell proliferation, migration, and invasion abilities in LUAD cells. Furthermore, SOCS2 was targeted by miR-3648, and co-transfection of a miR-3648 inhibitor or si-SOCS2 reversed the suppressive effects of SOCS2 in PC9 and A549 cells. miR-3648 enhanced the proliferation and promoted migration and invasion of LUAD by inhibiting SOCS2. In conclusion, our results indicate that miR-3648 plays a pivotal role in LUADe progression and might thus provide a novel therapeutic strategy for patients with LUAD.


Circular RNA Plasmacytoma Variant Translocation 1 (CircPVT1) knockdown ameliorates hypoxia-induced bladder fibrosis by regulating the miR-203/Suppressor of Cytokine Signaling 3 (SOCS3) signaling axis.

  • Teng Li‎ et al.
  • Bioengineered‎
  • 2022‎

The effects of circular RNAs (circRNAs) on bladder outlet obstruction (BOO)-induced hypertrophy and fibrogenesis in rats and hypoxia-induced bladder smooth muscle cell (BSMC) fibrosis remain unclear. This study aimed to determine the regulatory role of circRNAs in the phenotypic changes in BSMCs in BOO-induced rats.circRNAmicroarray and real-time PCR were used to explore differentiated expressed circRNAs. Bioinformatics analyses and dual-luciferase reporter were performed to identify the targets for circRNA PVT1 (circPVT1). BOO was performed to establish a bladder fibrosis animal model. The circPVT1 and suppressor of cytokine signaling 3 (SOCS3) expression levels were upregulated (p = 0.0061 and 0.0328, respectively), whereas the microRNA-203a (miR-203) level was downregulated in rats with bladder remodeling (p=0.0085). Bioinformatics analyses and dual-luciferase reporter assay results confirmed that circPVT1 sponges miR-203 and that the latter targets the 3'-untranslated region of SOCS3. Additionally, circPVT1 knockdown alleviated BOO-induced bladder hypertrophy and fibrogenesis. Furthermore, hypoxia was induced in BSMCs to establish a cell model of bladder fibrosis. Hypoxia induction in BSMCs resulted in upregulated circPVT1 and SOCS3 levels (p = 0.0052) and downregulated miR-203 levels. Transfection with circPVT1 and SOCS3 shRNA ameliorated hypoxia-induced transforming growth factor-β (TGF-β1), TGFβR1, α-smooth muscle actin, fibrotic growth factor, extracellular matrix subtypes, BSMC proliferation, and apoptosis-associated cell injury, whereas co-transfection with miR-203 inhibitor counteracted the effect of circPVT1 shRNA on these phenotypes.These findings revealed a novel circRNA regulator of BOO-associated bladder wall remodeling and hypoxia-induced phenotypic changes in BMSCs by targeting the miR-203-SOCS3 signaling axis.


Inhibition of Candida albicans in vivo and in vitro by antimicrobial peptides chromogranin A-N12 through microRNA-155/suppressor of cytokine signaling 1 axis.

  • Xiaohua Li‎ et al.
  • Bioengineered‎
  • 2022‎

Antimicrobial peptides (AMPs) have proven to inhibit a variety of pathogens. Chromogranin A-N12 (CGA-N12) is a kind of AMP, and it is characterized by stable structure, high anti-Candida activity, and good safety. However, it remains unclear whether CGA-N12 could effectively inhibit the growth of Candida albicans (C. albicans). Colony forming assays were used to measure minimal inhibitory concentration (MIC), minimal fungicidal concentration (MFC), and time-kill curve. Disseminated C. albicans rabbit model was established to investigate the influence of CGA-N12 on histological damage. The protein and mRNA levels of suppressor of cytokine signaling 1 (SOCS1) after treatment were investigated. The MIC and MFC of CGA-N12 against C. albicans was 6 mg/mL. CGA-N12 considerably inhibited germ tube formation of C. albicans. The fungal load in the tissues and inflammatory factors in the serum were suppressed by CGA-N12. CGA-N12 significantly reduced the histological changes caused by C. albicans, and the protein and mRNA levels of SOCS1 were markedly inhibited. The inhibition effect of CGA-N12 on C. albicans and significant improvement of histological damage by CGA-N12 through microRNA-155/SOCS1 axis were proved in this study. This study proposes a novel therapeutic strategy for the treatment and prevention of C. albicans.Abbreviations: AMPs: Antimicrobial peptides; MIC: Minimal inhibitory concentration; MFC: Minimal fungicidal concentration; AIDS: Acquired immune deficiency syndrome; PBS: Phosphate buffer saline; FBS: Fetal bovine serum; ROS: Reactive oxygen species; CFU: Colony formation unit; CGA: Chromogranin A; SOCS1: Suppressor of cytokine signaling 1; SDA: Sabouraud Dextrose Agar; GRAVY: Grand average of hydropathicity; C. parapsilosis: Candida parapsilosis; C. albicans: Candida albicans.


Knockdown of miR-92a suppresses the stemness of colorectal cancer cells via mediating SOCS3.

  • Lifa Li‎ et al.
  • Bioengineered‎
  • 2022‎

CRC, cancer cell; CSCs, cancer stem cells; SOCS3, suppressor of cytokine signaling 3.


SOCS5 contributes to temozolomide resistance in glioblastoma by regulating Bcl-2-mediated autophagy.

  • Jie Yu‎ et al.
  • Bioengineered‎
  • 2022‎

Temozolomide (TMZ) is the primary chemotherapeutic drug for treating glioblastoma (GBM); however, the final clinical outcome is considerably limited by the poor response and resistance to TMZ. Although autophagy is thought to be associated with chemotherapy resistance and cancer cell survival, the precise molecular mechanisms underlying this process remain elusive. The suppressor of cytokine signaling (SOCS) family is widely distributed in vivo and exerts a range of effects on tumors; however, the expression pattern and role of SOCS in GBM remains unknown. In this study, we determined that high SOCS5 expression level was associated with poor prognosis and TMZ resistance in GBM. TMZ induced an increase in SOCS5 expression level and upregulated autophagy during the acquisition of drug resistance. The observed increase in the extent of autophagy was mediated by SOCS5. Mechanistically, SOCS5 enhances the transcription of Bcl-2. Knockdown of SOCS5 inhibited TMZ chemoresistance in GBM cells through the inhibition of Bcl-2 recruited autophagy; upregulation of Bcl-2 blocked this effect. In summary, our findings revealed the involvement and underlying mechanism of SOCS5 in TMZ resistance. SOCS5 plays a critical role in GBM chemoresistance and may serve as a novel prognostic marker and therapeutic target for chemotherapeutically treating drug-resistant GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: