Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 382 papers

Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer.

  • Mingyu Sun‎ et al.
  • BMC cancer‎
  • 2021‎

Abnormal expression of suppressor of cytokine signaling (SOCS) proteins regulates tumor angiogenesis and development in cancers. In this study, we aimed to perform a comprehensive bioinformatic analysis of SOCS proteins in breast invasive carcinoma (BRCA).


Suppressor of cytokine signaling 3 controls lysosomal routing of G-CSF receptor.

  • Mahban I Irandoust‎ et al.
  • The EMBO journal‎
  • 2007‎

The hematopoietic system provides an attractive model for studying growth factor-controlled expansion and differentiation of cells in relation to receptor routing and its consequences for signal transduction. Suppressor of cytokine signaling (SOCS) proteins regulate receptor signaling partly via their ubiquitin ligase (E3)-recruiting SOCS box domain. Whether SOCS proteins affect signaling through modulating intracellular trafficking of receptors is unknown. Here, we show that a juxtamembrane lysine residue (K632) of the granulocyte colony-stimulating factor receptor (G-CSFR) plays a key role in receptor routing and demonstrate that the effects of SOCS3 on G-CSF signaling to a major extent depend on this lysine. Mutation of K632 causes accumulation of G-CSFR in early endosomes and leads to sustained activation of signal transducer and activator of transcription 5 and ERK, but not protein kinase B. Myeloid progenitors expressing G-CSFR mutants lacking K632 show a perturbed proliferation/differentiation balance in response to G-CSF. This is the first demonstration of SOCS-mediated ubiquitination and routing of a cytokine receptor and its impact on maintaining an appropriate signaling output.


Interleukin-6 Trans-Signaling Pathway Promotes Immunosuppressive Myeloid-Derived Suppressor Cells via Suppression of Suppressor of Cytokine Signaling 3 in Breast Cancer.

  • Mengmeng Jiang‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Interleukin-6 (IL-6) has been reported to stimulate myeloid-derived suppressor cells (MDSCs) in multiple cancers, but the molecular events involved in this process are not completely understood. We previously found that cancer-derived IL-6 induces T cell suppression of MDSCs in vitro via the activation of STAT3/IDO signaling pathway. In this study, we aimed to elucidate the underlying mechanisms. We found that in primary breast cancer tissues, cancer-derived IL-6 was positively correlated with infiltration of MDSCs in situ, which was accompanied by more aggressive tumor phenotypes and worse clinical outcomes. In vitro IL-6 stimulated the amplification of MDSCs and promoted their T cell suppression ability, which were fully inhibited by an IL-6-specific blocking antibody. Our results demonstrate that IL-6-dependent suppressor of cytokine signaling 3 (SOCS3) suppression in MDSCs induced phosphorylation of the JAK1, JAK2, TYK2, STAT1, and STAT3 proteins, which was correlated with T cell suppression of MDSCs in vitro. Therefore, dysfunction in the SOCS feedback loop promoted long-term activation of the JAK/STAT signaling pathway and predominantly contributed to IL-6-mediated effects on MDSCs. Furthermore, IL-6-induced inhibition of SOCS3 and activation of the JAK/STAT pathway was correlated with an elevated expression of IL-6 receptor α (CD126), in which the soluble CD126-mediated IL-6 trans-signaling pathway significantly regulated IL-6-mediated effects on MDSCs. Finally, IL-6-induced SOCS3 dysfunction and sustained activation of the JAK/STAT signaling pathway promoted the amplification and immunosuppressive function of breast cancer MDSCs in vitro and in vivo, and thus blocking the IL-6 signaling pathway is a promising therapeutic strategy for eliminating and inhibiting MDSCs to improve prognosis.


Expression of suppressor of cytokine signaling 3 in cerebrospinal fluid after subarachnoid hemorrhage.

  • Koji Osuka‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

IL-6 is a proinflammatory cytokine reported to play an important role in the induction of cerebral vasospasm after subarachnoid hemorrhage (SAH). Suppressor of cytokine signaling 3 (SOCS3) is known to act as an inhibitor of signal transduction of IL-6. However, there have been no reports on the expression of SOCS3 in cerebrospinal fluid (CSF) after SAH.


Suppressor of cytokine signaling 4 (SOCS4) protects against severe cytokine storm and enhances viral clearance during influenza infection.

  • Lukasz Kedzierski‎ et al.
  • PLoS pathogens‎
  • 2014‎

Suppressor of cytokine signaling (SOCS) proteins are key regulators of innate and adaptive immunity. There is no described biological role for SOCS4, despite broad expression in the hematopoietic system. We demonstrate that mice lacking functional SOCS4 protein rapidly succumb to infection with a pathogenic H1N1 influenza virus (PR8) and are hypersusceptible to infection with the less virulent H3N2 (X31) strain. In SOCS4-deficient animals, this led to substantially greater weight loss, dysregulated pro-inflammatory cytokine and chemokine production in the lungs and delayed viral clearance. This was associated with impaired trafficking of influenza-specific CD8 T cells to the site of infection and linked to defects in T cell receptor activation. These results demonstrate that SOCS4 is a critical regulator of anti-viral immunity.


Suppressor of Cytokine Signaling 2 Regulates Retinal Pigment Epithelium Metabolism by Enhancing Autophagy.

  • Xi-Yuan Liu‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Retinal pigment epithelium (RPE) serves critical functions in maintaining retinal homeostasis. An important function of RPE is to degrade the photoreceptor outer segment fragments daily to maintain photoreceptor function and longevity throughout life. An impairment of RPE functions such as metabolic regulation leads to the development of age-related macular degeneration (AMD) and inherited retinal degenerative diseases. As substrate recognition subunit of a ubiquitin ligase complex, suppressor of cytokine signaling 2 (SOCS2) specifically binds to the substrates for ubiquitination and negatively regulates growth hormone signaling. Herein, we explore the role of SOCS2 in the metabolic regulation of autophagy in the RPE cells. SOCS2 knockout mice exhibited the irregular morphological deposits between the RPE and Bruch's membrane. Both in vivo and in vitro experiments showed that RPE cells lacking SOCS2 displayed impaired autophagy, which could be recovered by re-expressing SOCS2. SOCS2 recognizes the ubiquitylated proteins and participates in the formation of autolysosome by binding with autophagy receptors and lysosome-associated membrane protein2 (LAMP-2), thereby regulating the phosphorylation of glycogen synthase kinase 3β (GSK3β) and mammalian target of rapamycin (mTOR) during the autophagy process. Our results imply that SOCS2 participates in ubiquitin-autophagy-lysosomal pathway and enhances autophagy by regulating GSK3β and mTOR. This study provides a potential therapeutic target for AMD.


Toll-like receptor 3 and suppressor of cytokine signaling proteins regulate CXCR4 and CXCR7 expression in bone marrow-derived human multipotent stromal cells.

  • Suzanne L Tomchuck‎ et al.
  • PloS one‎
  • 2012‎

The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to "danger" signals--by-products of damaged, infected or inflamed tissues--via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC.


Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15).

  • Elizabeth C Moore‎ et al.
  • Virology journal‎
  • 2008‎

Respiratory syncytial virus (RSV) is a major cause of severe lower airway disease in infants and young children, but no safe and effective RSV vaccine is yet available. Factors attributing to this problem are associated with an incomplete understanding of the mechanisms by which RSV modulates the host cell response to infection. In the present study, we investigate suppressor of cytokine signaling (SOCS)-1 and SOCS3 expression associated with the type I IFN and IFN-stimulated gene (ISG)-15 response following infection of mouse lung epithelial (MLE-15) cells with RSV or RSV mutant viruses lacking the G gene, or NS1 and NS2 gene deletions. Studies in MLE-15 cells are important as this cell line represents the distal bronchiolar and alveolar epithelium of mice, the most common animal model used to evaluate the host cell response to RSV infection, and exhibit morphologic characteristics of alveolar type II cells, a primary cell type targeted during RSV infection. These results show an important role for SOCS1 regulation of the antiviral host response to RSV infection, and demonstrate a novel role for RSV G protein manipulation of SOCS3 and modulation of ISG15 and IFNbeta mRNA expression.


Suppressor of cytokine signaling 6 can enhance epidermal growth factor receptor signaling pathway in Bombyx mori (Dazao).

  • Muhammad Nadeem Abbas‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

The SOCS (Suppressor of cytokine signaling) family members are a potential negative regulator of cytokine signaling pathway and play a key role to maintain immunological functions in animals. SOCS-6 is an important member of the SOCS family, however the functions of this gene have rarely been explored among eukaryotes. Herein, we cloned and expressed SOCS-6 gene from Bombyx mori (Dazao) (BmSOCS-6), and anti-rabbit antibodies were prepared using purified recombinant BmSOCS-6 protein. Under normal physiological conditions, the BmSOCS-6 expression was observed at varied levels in six tissues, with most greatly expressed in fat body and hemocytes. After immune challenge with viral, fungal and bacterial pathogens, the BmSOCS-6 showed distinctly varied expression patterns in tissue, time and microbe dependent manner. By contrast, recombinant BmSOCS-6 protein strongly enhanced the expression of epidermal growth factor receptor (EGFR) pathway related genes, while the depletion of BmSOCS-6 by double stranded RNA suppressed their production. Altogether we concluded that BmSOCS-6 may improve the efficiency of EGFR signaling pathway in B. mori (Dazao).


Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity.

  • Won Sam Kim‎ et al.
  • Scientific reports‎
  • 2017‎

Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2-/- mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2-/- HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2-/- mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction.


Suppressor of Cytokine Signaling-1/STAT1 Regulates Renal Inflammation in Mesangial Proliferative Glomerulonephritis Models.

  • Jiuxu Bai‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Mesangial proliferative glomerulonephritis (MsGN) is a significant global threat to public health. Inflammation plays a crucial role in MsGN; however, the underlying mechanism remains unknown. Herein, we demonstrate that suppression of the cytokine signaling-1 (SOCS1)/signal transducer and activator of transcription 1 (STAT1) signaling pathway is associated with renal inflammation and renal injury in MsGN. Using MsGN rat (Thy1.1 GN) and mouse (Habu GN) models, renal SOCS1/STAT1 was determined to be associated with CD4+ T cell infiltration and related cytokines. In vitro, SOCS1 overexpression repressed IFN-γ-induced MHC class II and cytokine levels and STAT1 phosphorylation in mesangial cells. SOCS1 and STAT1 inhibitors significantly inhibited IFN-γ-induced CIITA promoter activity and MHC class II expression. In conclusion, our study emphasizes the pivotal role of the SOCS1/STAT1 axis in the regulation of inflammation in MsGN.


miR-3648 promotes lung adenocarcinoma-genesis by inhibiting SOCS2 (suppressor of cytokine signaling 2).

  • Yanhong Tu‎ et al.
  • Bioengineered‎
  • 2022‎

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and is associated with high morbidity and mortality. We aimed to study the effects of microRNA-3648 (miR-3648) on LUAD by inhibiting its downstream target suppressor of cytokine signaling 2 (SOCS2) mRNA. miR-3648 expression was measured by real-time quantitative PCR in LUAD and normal lung epithelial cell lines. The direct interaction between miR-3648 and SOCS2 mRNA was identified through luciferase reporter and RNA pull-down assays. Cell viability, migration, and invasion were examined using cell functional assays. MiR-3648 was found to be overexpressed in LUAD cells and tissues. Overexpression of miR-3648 significantly enhanced cell proliferation, migration, and invasion abilities in LUAD cells. Furthermore, SOCS2 was targeted by miR-3648, and co-transfection of a miR-3648 inhibitor or si-SOCS2 reversed the suppressive effects of SOCS2 in PC9 and A549 cells. miR-3648 enhanced the proliferation and promoted migration and invasion of LUAD by inhibiting SOCS2. In conclusion, our results indicate that miR-3648 plays a pivotal role in LUADe progression and might thus provide a novel therapeutic strategy for patients with LUAD.


Antioxidant Effects of PS5, a Peptidomimetic of Suppressor of Cytokine Signaling 1, in Experimental Atherosclerosis.

  • Sara La Manna‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

The chronic activation of the Janus kinase/signal transducer and activator of the transcription (JAK/STAT) pathway is linked to oxidative stress, inflammation and cell proliferation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate the JAK/STAT, and SOCS1 possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that KIR-SOCS1 mimetics can be considered valuable therapeutics in several disorders (e.g., diabetes, neurological disorders and atherosclerosis). Herein, we investigated the antioxidant and atheroprotective effects of PS5, a peptidomimetic of KIR-SOCS1, both in vitro (vascular smooth muscle cells and macrophages) and in vivo (atherosclerosis mouse model) by analyzing gene expression, intracellular O2•- production and atheroma plaque progression and composition. PS5 was revealed to be able to attenuate NADPH oxidase (NOX1 and NOX4) and pro-inflammatory gene expression, to upregulate antioxidant genes and to reduce atheroma plaque size, lipid content and monocyte/macrophage accumulation. These findings confirm that KIR-SOCS1-based drugs could be excellent antioxidant agents to contrast atherosclerosis.


Identification and characterization of suppressor of cytokine signaling 3 (SOCS-3) homologues in teleost fish.

  • Hong-Jian Jin‎ et al.
  • Molecular immunology‎
  • 2007‎

The suppressor of cytokine signaling 3 (SOCS-3) is a member of a newly discovered protein family, which have been shown to regulate the responses of many immune cytokines, such as interferon (IFN), interleukin-2 (IL-2) and IL-6, etc., by inhibiting Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in a negative auto-regulatory manner. Although SOCS-3 was well characterized in several mammal species, there was still no report in fish. In present study, we initially identified and characterized the SOCS-3 genes from three fishes, the Tetraodon nigroviridis, the Danio rerio and the Fugu rubripes. The results showed that Tetraodon SOCS-3 gene located within a 2666 bp genomic fragment of chromosome 3, transcribed into a 1445 bp mRNA including 273 bp 5' UTR (untranslated region), 606 bp ORF (open reading frame) and 566 bp 3' UTR. Tetraodon SOCS-3 with 201aa (amino acid) has a calculated molecular mass of 22.76 kDa and a theoretical pI of 8.99. Danio SOCS-3 gene located within a 3617 bp genomic fragment of chromosome 3, transcribed into a 1927 bp mRNA including 178 bp 5' UTR, 624 bp ORF and 1125 bp 3' UTR. Danio SOCS-3 with 207aa has a calculated molecular mass of 23.68 kDa and a theoretical pI of 9.19. Fugu SOCS-3 gene located within a 2842 bp genomic fragment of Scaffold_1118, transcribed into a 1528 bp mRNA including 209 bp 5' UTR, 606 bp ORF and 713 bp 3' UTR. Fugu SOCS-3 with 201aa has a calculated molecular mass of 22.76 kDa and a theoretical pI of 8.18. The fish SOCS-3-encoding genes with the same organization as the mammalians consist of two exons and a single intron that lies in the 5' UTR of the transcript. The deduced amino acid sequences of the fish SOCS-3s showed: 60.7-61.7% sequence identity to mammalian SOCS-3s; 62.3-63.2% sequence identity to bird SOCS-3s; and 55.3-57.8% sequence identity to amphibian SOCS-3s. Phylogenetic analysis separates the fish SOCS-3s into an exclusive group. Expression study of Tetraodon SOCS-3 mRNA in ten selected tissues showed that it was constitutively expressed and induced by lipopolysaccharide (LPS) strikingly. These results indicated that SOCS-3s in fish may be involved in inflammatory responses. This is the first report of cloning and characterization of SOCS-3 cDNAs and genes in fish.


DNA methylation at the suppressor of cytokine signaling 3 (SOCS3) gene influences height in childhood.

  • Prachand Issarapu‎ et al.
  • Nature communications‎
  • 2023‎

Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.


Role of Suppressor of cytokine signaling 2 during the development and resolution of an experimental arthritis.

  • Allysson Cramer‎ et al.
  • Cellular immunology‎
  • 2022‎

Rheumatoid arthritis(RA) is a debilitating chronic inflammatory disease. Suppressors of Cytokine Signaling(SOCS) proteins regulate homeostasis and pathogenesis in several diseases. The intersection between RA pathophysiology and SOCS2 is unclear. Herein, we investigated the roles of SOCS2 during the development of an experimental antigen-induced arthritis(AIA). In wild type mice, joint SOCS2 expression was reduced during AIA development. At the peak of inflammation, SOCS2-/- mice presented with reduced numbers of infiltrated cells in their joints. At the late phase of AIA, however, exhibited increased adhesion/infiltration of neutrophils, macrophages, CD4+-T cells, CD4+CD8+-T cells, and CD4-CD8--T cells associated with elevated IL-17 and IFN-γ levels, joint damage, proteoglycan loss, and nociception. SOCS2 deficiency resulted in lower numbers of apoptotic neutrophils and reduced efferocytosis. The present study demonstrated the vital role of SOCS2 during the development and resolution of an experimental RA model. Hence, this protein may be a novel therapeutic target for this disorder.


Extended anti-inflammatory action of a degradation-resistant mutant of cell-penetrating suppressor of cytokine signaling 3.

  • Tynetta C Fletcher‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Suppressor of cytokine signaling 3 (SOCS3) regulates the proinflammatory cytokine signaling mediated by the JAK/STAT signaling pathway. SOCS3 is rapidly induced and then targeted to the ubiquitin-proteasome pathway via a mechanism that requires the C-terminal SOCS box. Due to its rapid turnover, the intracellular stores of SOCS3 seem insufficient to control acute or protracted inflammatory diseases. Previously, we developed an intracellular protein therapy that uses a recombinant cell-penetrating form of SOCS3 (CP-SOCS3) to inhibit the JAK/STAT pathway and prevent cytokine-mediated lethal inflammation and apoptosis of the liver (Jo, D., Liu, D., Yao, S., Collins, R. D., and Hawiger, J. (2005) Nat. Med. 11, 892-898). The potent anti-inflammatory and cytoprotective activity of CP-SOCS3 prompted us to analyze its intracellular turnover, as compared with that of endogenous SOCS3 protein induced in macrophages by the proinflammatory agonists, interferon-gamma and lipopolysaccharide. We found that the half-life (t(1/2)) of endogenous SOCS3 is 0.7 h in activated macrophages, compared with a t(1/2) of 6.2 h for recombinant CP-SOCS3. Deletion of the SOCS box in CP-SOCS3 renders it more resistant to proteasomal degradation, extending its t(1/2) to 29 h. Consequently, this SOCS box-deleted form of CP-SOCS3 displays persistent inhibitory activity for 24 h toward interferon-gamma- and lipopolysaccharide-induced cytokine and chemokine production. Compared with the wild-type suppressor, this gain-of-function CP-SOCS3 mutant provides a longer acting inhibitor of cytokine signaling, a feature that offers a clear advantage for the intracellular delivery of proteins to treat acute or protracted inflammatory diseases.


Expression of suppressor of cytokine signaling genes in human elderly and Alzheimer's disease brains and human microglia.

  • D G Walker‎ et al.
  • Neuroscience‎
  • 2015‎

Multiple cellular systems exist to prevent uncontrolled inflammation in brain tissues; the suppressor of cytokine signaling (SOCS) proteins have key roles in these processes. SOCS proteins are involved in restricting cellular signaling pathways by enhancing the degradation of activated receptors and removing the stimuli for continued activation. There are eight separate SOCS genes that code for proteins with similar structures and properties. All SOCS proteins can reduce signaling of activated transcription factors Janus kinase (JAK) and signal transducer and activator of transcription (STAT), but they also regulate many other signaling pathways. SOCS-1 and SOCS-3 have particular roles in regulating inflammatory processes. Chronic inflammation is a key feature of the pathology present in Alzheimer's disease (AD)-affected brains resulting from responses to amyloid plaques or neurofibrillary tangles, the pathological hallmarks of AD. The goal of this study was to examine SOCS gene expression in human non-demented (ND) and AD brains and in human brain-derived microglia to determine if AD-related pathology resulted in a deficit of these critical molecules. We demonstrated that SOCS-1, SOCS-2, SOCS-3 and cytokine-inducible SH2 containing protein (CIS) mRNA expression was increased in amyloid beta peptide (Aβ)- and inflammatory-stimulated microglia, while SOCS-6 mRNA expression was decreased by both types of treatments. Using human brain samples from the temporal cortex from ND and AD cases, SOCS-1 through SOCS-7 and CIS mRNA and SOCS-1 through SOCS-7 protein could be detected constitutively in ND and AD human brain samples. Although, the expression of key SOCS genes did not change to a large extent as a result of AD pathology, there were significantly increased levels of SOCS-2, SOCS-3 and CIS mRNA and increased protein levels of SOCS-4 and SOCS-7 in AD brains. In summary, there was no evidence of a deficit of these key inflammatory regulating proteins in aged or AD brains.


Epithelial induction of porcine suppressor of cytokine signaling 2 (SOCS2) gene expression in response to Entamoeba histolytica.

  • Timothée Bruel‎ et al.
  • Developmental and comparative immunology‎
  • 2010‎

Suppressor of cytokine signaling (SOCS) proteins are key physiological regulators of both innate and adaptive immunity. These proteins belong to the three major classes of modulators of cytokines signaling. In the following article, we used porcine polarized intestinal cells to study early response to the protozoan, Entamoeba histolytica, and we identified by rapid amplification of cDNA ends (RACE) PCR porcine SOCS1, SOCS4, SOCS5 and SOCS6 encoding sequences. With more than 92% identity predicted porcine SOCS proteins are very similar to their human counterparts. Among SOCS transcripts, only SOCS2 mRNA was significantly induced in epithelial intestinal cells in response to the cytolytic activity of the parasite. The transcriptomic profile obtained after 3h of co-culture of polarized intestinal cells with E. histolytica was clearly oriented toward inflammation and the recruitment of neutrophils. These transcriptomic data have been normalized with accuracy by the utilisation of multiple validated reference genes. The analysis offers a first set of reference genes useful for future studies in porcine intestinal cells. Our data shed light on the understanding of the early response of polarized intestinal cells to E. histolytica and identified a potential involvement of SOCS2 in the parasite regulation of the host response.


Ascorbate protects liver from metabolic disorder through inhibition of lipogenesis and suppressor of cytokine signaling 3 (SOCS3).

  • Yingying Xu‎ et al.
  • Nutrition & metabolism‎
  • 2020‎

Fatty liver is a reversible status, but also an origin stage to develop to other metabolic syndromes, such as diabetes and heart disease that threatens public health worldwide. Ascorbate deficiency is reported to be correlated with increasing risks for metabolic syndromes, but whether ascorbate has a therapeutic effect is unknown. Here, we investigated if ascorbate treatment alone could work on protecting from the development of steatosis and mechanisms beyond.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: