Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Intracellular Zinc Modulates Cardiac Ryanodine Receptor-mediated Calcium Release.

  • Jason Woodier‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Aberrant Zn(2+) homeostasis is a hallmark of certain cardiomyopathies associated with altered contractile force. In this study, we addressed whether Zn(2+) modulates cardiac ryanodine receptor gating and Ca(2+) dynamics in isolated cardiomyocytes. We reveal that Zn(2+) is a high affinity regulator of RyR2 displaying three modes of operation. Picomolar free Zn(2+) concentrations potentiate RyR2 responses, but channel activation is still dependent on the presence of cytosolic Ca(2+). At concentrations of free Zn(2+) >1 nm, Zn(2+) is the main activating ligand, and the dependence on Ca(2+) is removed. Zn(2+) is therefore a higher affinity activator of RyR2 than Ca(2+). Millimolar levels of free Zn(2+) were found to inhibit channel openings. In cardiomyocytes, consistent with our single channel results, we show that Zn(2+) modulates both the frequency and amplitude of Ca(2+) waves in a concentration-dependent manner and that physiological levels of Zn(2+) elicit Ca(2+) release in the absence of activating levels of cytosolic Ca(2+). This highlights a new role for intracellular Zn(2+) in shaping Ca(2+) dynamics in cardiomyocytes through modulation of RyR2 gating.


Functional ryanodine receptors in the plasma membrane of RINm5F pancreatic beta-cells.

  • Christian Rosker‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

Ryanodine receptors (RyR) are Ca(2+) channels that mediate Ca(2+) release from intracellular stores in response to diverse intracellular signals. In RINm5F insulinoma cells, caffeine, and 4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca(2+) entry that was independent of store-operated Ca(2+) entry, and blocked by prior incubation with a concentration of ryanodine that inactivates RyR. Patch-clamp recording identified small numbers of large-conductance (gamma(K) = 169 pS) cation channels that were activated by caffeine, 4CmC or low concentrations of ryanodine. Similar channels were detected in rat pancreatic beta-cells. In RINm5F cells, the channels were blocked by cytosolic, but not extracellular, ruthenium red. Subcellular fractionation showed that type 3 IP(3) receptors (IP(3)R3) were expressed predominantly in endoplasmic reticulum, whereas RyR2 were present also in plasma membrane fractions. Using RNAi selectively to reduce expression of RyR1, RyR2, or IP(3)R3, we showed that RyR2 mediates both the Ca(2+) entry and the plasma membrane currents evoked by agonists of RyR. We conclude that small numbers of RyR2 are selectively expressed in the plasma membrane of RINm5F pancreatic beta-cells, where they mediate Ca(2+) entry.


Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating.

  • Joanne Euden‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K(+)-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K(+) channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G(4864)LIIDA(4869) in RyR2) analogous to the glycine hinge motif present in many K(+) channels. Gating in these K(+) channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K(+) channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K(+) channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.


Characterization of the molecular architecture of human caveolin-3 and interaction with the skeletal muscle ryanodine receptor.

  • Gareth Whiteley‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

Caveolin-3 facilitates both caveolae formation and a range of cell signaling pathways, including Ca(2+) homeostasis.


Structural and functional interactions between the Ca2+-, ATP-, and caffeine-binding sites of skeletal muscle ryanodine receptor (RyR1).

  • Venkat R Chirasani‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Ryanodine receptor type 1 (RyR1) releases Ca2+ ions from the sarcoplasmic reticulum of skeletal muscle cells to initiate muscle contraction. Multiple endogenous and exogenous effectors regulate RyR1, such as ATP, Ca2+, caffeine (Caf), and ryanodine. Cryo-EM identified binding sites for the three coactivators Ca2+, ATP, and Caf. However, the mechanism of coregulation and synergy between these activators remains to be determined. Here, we used [3H]ryanodine ligand-binding assays and molecular dynamics simulations to test the hypothesis that both the ATP- and Caf-binding sites communicate with the Ca2+-binding site to sensitize RyR1 to Ca2+. We report that either phosphomethylphosphonic acid adenylate ester (AMPPCP), a nonhydrolyzable ATP analog, or Caf can activate RyR1 in the absence or the presence of Ca2+. However, enhanced RyR1 activation occurred in the presence of Ca2+, AMPPCP, and Caf. In the absence of Ca2+, Na+ inhibited [3H]ryanodine binding without impairing RyR1 activation by AMPPCP and Caf. Computational analysis suggested that Ca2+-, ATP-, and Caf-binding sites modulate RyR1 protein stability through interactions with the carboxyterminal domain and other domains in the activation core. In the presence of ATP and Caf but the absence of Ca2+, Na+ is predicted to inhibit RyR1 by interacting with the Ca2+-binding site. Our data suggested that ATP and Caf binding affected the conformation of the Ca2+-binding site, and conversely, Ca2+ binding affected the conformation of the ATP- and Caf-binding sites. We conclude that Ca2+, ATP, and Caf regulate RyR1 through a network of allosteric interactions involving the Ca2+-, ATP-, and Caf-binding sites.


Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor.

  • Renaud Bussiere‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the β-amyloid precursor protein (βAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid β (Aβ), β-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aβ through a β2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances βAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the β2-adrenergic signaling cascade reduced βAPP processing and the production of Aβ in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.


Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage.

  • Benedict Reilly-O'Donnell‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Aberrant Zn2+ homeostasis is associated with dysregulated intracellular Ca2+ release, resulting in chronic heart failure. In the failing heart a small population of cardiac ryanodine receptors (RyR2) displays sub-conductance-state gating leading to Ca2+ leakage from sarcoplasmic reticulum (SR) stores, which impairs cardiac contractility. Previous evidence suggests contribution of RyR2-independent Ca2+ leakage through an uncharacterized mechanism. We sought to examine the role of Zn2+ in shaping intracellular Ca2+ release in cardiac muscle. Cardiac SR vesicles prepared from sheep or mouse ventricular tissue were incorporated into phospholipid bilayers under voltage-clamp conditions, and the direct action of Zn2+ on RyR2 channel function was examined. Under diastolic conditions, the addition of pathophysiological concentrations of Zn2+ (≥2 nm) caused dysregulated RyR2-channel openings. Our data also revealed that RyR2 channels are not the only SR Ca2+-permeable channels regulated by Zn2+ Elevating the cytosolic Zn2+ concentration to 1 nm increased the activity of the transmembrane protein mitsugumin 23 (MG23). The current amplitude of the MG23 full-open state was consistent with that previously reported for RyR2 sub-conductance gating, suggesting that in heart failure in which Zn2+ levels are elevated, RyR2 channels do not gate in a sub-conductance state, but rather MG23-gating becomes more apparent. We also show that in H9C2 cells exposed to ischemic conditions, intracellular Zn2+ levels are elevated, coinciding with increased MG23 expression. In conclusion, these data suggest that dysregulated Zn2+ homeostasis alters the function of both RyR2 and MG23 and that both ion channels play a key role in diastolic SR Ca2+ leakage.


The Arrhythmogenic Calmodulin p.Phe142Leu Mutation Impairs C-domain Ca2+ Binding but Not Calmodulin-dependent Inhibition of the Cardiac Ryanodine Receptor.

  • Mads Toft Søndergaard‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

A number of point mutations in the intracellular Ca2+-sensing protein calmodulin (CaM) are arrhythmogenic, yet their underlying mechanisms are not clear. These mutations generally decrease Ca2+ binding to CaM and impair inhibition of CaM-regulated Ca2+ channels like the cardiac Ca2+ release channel (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+ binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start-Met), which markedly reduces CaM Ca2+ binding. Surprisingly, CaM-F142L had little to no aberrant effect on RyR2-mediated store overload-induced Ca2+ release in HEK293 cells compared with CaM-WT. Furthermore, CaM-F142L enhanced CaM-dependent RyR2 inhibition at the single channel level compared with CaM-WT. This is in stark contrast to the actions of arrhythmogenic CaM mutations N54I, D96V, N98S, and D130G, which all diminish CaM-dependent RyR2 inhibition. Thermodynamic analysis showed that apoCaM-F142L converts an endothermal interaction between CaM and the CaM-binding domain (CaMBD) of RyR2 into an exothermal one. Moreover, NMR spectra revealed that the CaM-F142L-CaMBD interaction is structurally different from that of CaM-WT at low Ca2+ These data indicate a distinct interaction between CaM-F142L and the RyR2 CaMBD, which may explain the stronger CaM-dependent RyR2 inhibition by CaM-F142L, despite its reduced Ca2+ binding. Collectively, these results add to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+ release by manipulating the CaM-RyR2 interaction.


Structural and functional interactions between the EF hand domain and S2-S3 loop in the type-1 ryanodine receptor ion channel.

  • Venkat R Chirasani‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.


A junctophilin-caveolin interaction enables efficient coupling between ryanodine receptors and BKCa channels in the Ca2+ microdomain of vascular smooth muscle.

  • Takanori Saeki‎ et al.
  • The Journal of biological chemistry‎
  • 2019‎

Functional coupling between large-conductance Ca2+-activated K+ (BKCa) channels in the plasma membrane (PM) and ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) is an essential mechanism for regulating mechanical force in most smooth muscle (SM) tissues. Spontaneous Ca2+ release through RyRs (Ca2+ sparks) and subsequent BKCa channel activation occur within the PM-SR junctional sites. We report here that a molecular interaction of caveolin-1 (Cav1), a caveola-forming protein, with junctophilin-2 (JP2), a bridging protein between PM and SR, positions BKCa channels near RyRs in SM cells (SMCs) and thereby contributes to the formation of a molecular complex essential for Ca2+ microdomain function. Approximately half of all Ca2+ sparks occurred within a close distance (<400 nm) from fluorescently labeled JP2 or Cav1 particles, when they were moderately expressed in primary SMCs from mouse mesenteric artery. The removal of caveolae by genetic Cav1 ablation or methyl-β-cyclodextrin treatments significantly reduced coupling efficiency between Ca2+ sparks and BKCa channel activity in SMCs, an effect also observed after JP2 knockdown in SMCs. A 20-amino acid-long region in JP2 appeared to be essential for the observed JP2-Cav1 interaction, and we also observed an interaction between JP2 and the BKCa channel. It can be concluded that the JP2-Cav1 interaction provides a structural and functional basis for the Ca2+ microdomain at PM-SR junctions and mediates cross-talk between RyRs and BKCa channels, converts local Ca2+ sparks into membrane hyperpolarization, and contributes to stabilizing resting tone in SMCs.


ER stress increases expression of intracellular calcium channel RyR1 to modify Ca2+ homeostasis in pancreatic beta cells.

  • Irina X Zhang‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Pancreatic beta cells maintain glucose homeostasis by secreting pulses of insulin in response to a rise in plasma glucose. Pulsatile insulin secretion occurs as a result of glucose-induced oscillations in beta-cell cytosolic Ca2+. The endoplasmic reticulum (ER) helps regulate beta-cell cytosolic Ca2+, and ER stress can lead to ER Ca2+ reduction, beta-cell dysfunction, and an increased risk of type 2 diabetes. However, the mechanistic effects of ER stress on individual calcium channels are not well understood. To determine the effects of tunicamycin-induced ER stress on ER inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) and their involvement in subsequent Ca2+ dysregulation, we treated INS-1 832/13 cells and primary mouse islets with ER stress inducer tunicamycin (TM). We showed TM treatment increased RyR1 mRNA without affecting RyR2 mRNA and decreased both IP3R1 and IP3R3 mRNA. Furthermore, we found stress reduced ER Ca2+ levels, triggered oscillations in cytosolic Ca2+ under subthreshold glucose conditions, and increased apoptosis and that these changes were prevented by cotreatment with the RyR1 inhibitor dantrolene. In addition, we demonstrated silencing RyR1-suppressed TM-induced subthreshold cytosolic Ca2+ oscillations, but silencing RyR2 did not affect these oscillations. In contrast, inhibiting IP3Rs with xestospongin-C failed to suppress the TM-induced cytosolic Ca2+ oscillations and did not protect beta cells from TM-induced apoptosis although xestospongin-C inclusion did prevent ER Ca2+ reduction. Taken together, these results show changes in RyR1 play a critical role in ER stress-induced Ca2+ dysfunction and beta-cell apoptosis.


Putative malignant hyperthermia mutation CaV1.1-R174W is insufficient to trigger a fulminant response to halothane or confer heat stress intolerance.

  • Wei Feng‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Neuronal ER-plasma membrane junctions organized by Kv2-VAP pairing recruit Nir proteins and affect phosphoinositide homeostasis.

  • Michael Kirmiz‎ et al.
  • The Journal of biological chemistry‎
  • 2019‎

The association of plasma membrane (PM)-localized voltage-gated potassium (Kv2) channels with endoplasmic reticulum (ER)-localized vesicle-associated membrane protein-associated proteins VAPA and VAPB defines ER-PM junctions in mammalian brain neurons. Here, we used proteomics to identify proteins associated with Kv2/VAP-containing ER-PM junctions. We found that the VAP-interacting membrane-associated phosphatidylinositol (PtdIns) transfer proteins PYK2 N-terminal domain-interacting receptor 2 (Nir2) and Nir3 specifically associate with Kv2.1 complexes. When coexpressed with Kv2.1 and VAPA in HEK293T cells, Nir2 colocalized with cell-surface-conducting and -nonconducting Kv2.1 isoforms. This was enhanced by muscarinic-mediated PtdIns(4,5)P2 hydrolysis, leading to dynamic recruitment of Nir2 to Kv2.1 clusters. In cultured rat hippocampal neurons, exogenously expressed Nir2 did not strongly colocalize with Kv2.1, unless exogenous VAPA was also expressed, supporting the notion that VAPA mediates the spatial association of Kv2.1 and Nir2. Immunolabeling signals of endogenous Kv2.1, Nir2, and VAP puncta were spatially correlated in cultured neurons. Fluorescence-recovery-after-photobleaching experiments revealed that Kv2.1, VAPA, and Nir2 have comparable turnover rates at ER-PM junctions, suggesting that they form complexes at these sites. Exogenous Kv2.1 expression in HEK293T cells resulted in significant differences in the kinetics of PtdIns(4,5)P2 recovery following repetitive muscarinic stimulation, with no apparent impact on resting PtdIns(4,5)P2 or PtdIns(4)P levels. Finally, the brains of Kv2.1-knockout mice had altered composition of PtdIns lipids, suggesting a crucial role for native Kv2.1-containing ER-PM junctions in regulating PtdIns lipid metabolism in brain neurons. These results suggest that ER-PM junctions formed by Kv2 channel-VAP pairing regulate PtdIns lipid homeostasis via VAP-associated PtdIns transfer proteins.


RyR2 disease mutations at the C-terminal domain intersubunit interface alter closed-state stability and channel activation.

  • Wenting Guo‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Ryanodine receptors (RyRs) are ion channels that mediate the release of Ca2+ from the sarcoplasmic reticulum/endoplasmic reticulum, mutations of which are implicated in a number of human diseases. The adjacent C-terminal domains (CTDs) of cardiac RyR (RyR2) interact with each other to form a ring-like tetrameric structure with the intersubunit interface undergoing dynamic changes during channel gating. This mobile CTD intersubunit interface harbors many disease-associated mutations. However, the mechanisms of action of these mutations and the role of CTD in channel function are not well understood. Here, we assessed the impact of CTD disease-associated mutations P4902S, P4902L, E4950K, and G4955E on Ca2+- and caffeine-mediated activation of RyR2. The G4955E mutation dramatically increased both the Ca2+-independent basal activity and Ca2+-dependent activation of [3H]ryanodine binding to RyR2. The P4902S and E4950K mutations also increased Ca2+ activation but had no effect on the basal activity of RyR2. All four disease mutations increased caffeine-mediated activation of RyR2 and reduced the threshold for activation and termination of spontaneous Ca2+ release. G4955D dramatically increased the basal activity of RyR2, whereas G4955K mutation markedly suppressed channel activity. Similarly, substitution of P4902 with a negatively charged residue (P4902D), but not a positively charged residue (P4902K), also dramatically increased the basal activity of RyR2. These data suggest that electrostatic interactions are involved in stabilizing the CTD intersubunit interface and that the G4955E disease mutation disrupts this interface, and thus the stability of the closed state. Our studies shed new insights into the mechanisms of action of RyR2 CTD disease mutations.


An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals.

  • Eugen Brailoiu‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous messenger proposed to stimulate Ca(2+) release from acidic organelles via two-pore channels (TPCs). It has been difficult to resolve this trigger event from its amplification via endoplasmic reticulum Ca(2+) stores, fuelling speculation that archetypal intracellular Ca(2+) channels are the primary targets of NAADP. Here, we redirect TPC2 from lysosomes to the plasma membrane and show that NAADP evokes Ca(2+) influx independent of ryanodine receptors and that it activates a Ca(2+)-permeable channel whose conductance is reduced by mutation of a residue within a putative pore. We therefore uncouple TPC2 from amplification pathways and prove that it is a pore-forming subunit of an NAADP-gated Ca(2+) channel.


Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptor subunit GluA2 from the endoplasmic reticulum is stimulated by a complex containing Ca2+/calmodulin-activated kinase II (CaMKII) and PICK1 protein and by release of Ca2+ from internal stores.

  • Wei Lu‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca(2+) permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca(2+) permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca(2+) release from internal stores, the activity of Ca(2+)/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca(2+) release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca(2+) dynamics and CaMKII activity.


Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling and arrhythmias in the heart evoked by β-adrenergic stimulation.

  • Merle Nebel‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca(2+) release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca(2+) signals sensitive to inhibitors of both acidic Ca(2+) stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca(2+) transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca(2+) transients were recorded both as increases of the free cytosolic Ca(2+) concentration and as decreases of the sarcoplasmic luminal Ca(2+) concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca(2+) transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy.


A novel fluorescent cell membrane-permeable caged cyclic ADP-ribose analogue.

  • Pei-Lin Yu‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

Cyclic adenosine diphosphate ribose is an endogenous Ca(2+) mobilizer involved in diverse cellular processes. A cell membrane-permeable cyclic adenosine diphosphate ribose analogue, cyclic inosine diphosphoribose ether (cIDPRE), can induce Ca(2+) increase in intact human Jurkat T-lymphocytes. Here we synthesized a coumarin-caged analogue of cIDPRE (Co-i-cIDPRE), aiming to have a precisely temporal and spatial control of bioactive cIDPRE release inside the cell using UV uncaging. We showed that Co-i-cIDPRE accumulated inside Jurkat cells quickly and efficiently. Uncaging of Co-i-cIDPRE evoked Ca(2+) release from endoplasmic reticulum, with concomitant Ca(2+) influx in Jurkat cells. Ca(2+) release evoked by uncaged Co-i-cIDPRE was blocked by knockdown of ryanodine receptors (RyRs) 2 and 3 in Jurkat cells. The associated Ca(2+) influx, on the other hand, was abolished by double knockdown of Stim1 and TRPM2 in Jurkat cells. Furthermore, Ca(2+) release or influx evoked by uncaged Co-i-cIDPRE was recapitulated in HEK293 cells that overexpress RyRs or TRPM2, respectively, but not in wild-type cells lacking these channels. In summary, our results indicate that uncaging of Co-i-cIDPRE incites Ca(2+) release from endoplasmic reticulum via RyRs and triggers Ca(2+) influx via TRPM2.


The steroid hormone 20-hydroxyecdysone via nongenomic pathway activates Ca2+/calmodulin-dependent protein kinase II to regulate gene expression.

  • Yu-Pu Jing‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

The steroid hormone 20-hydroxyecdysone (20E) triggers calcium signaling pathway to regulate 20E response gene expression, but the mechanism underlying this process remains unclear. We propose that the 20E-induced phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) serves an important function in 20E response gene transcription in the lepidopteran insect Helicoverpa armigera. CaMKII showed increased expression and phosphorylation during metamorphosis. 20E elevated CaMKII phosphorylation. However, the G protein-coupled receptor (GPCR) and ryanodine receptor inhibitor suramin, the phospholipase C inhibitor U73122, and the inositol 1,4,5-triphosphate receptor inhibitor xestospongin C suppressed 20E-induced CaMKII phosphorylation. Two ecdysone-responsible GPCRs and Gαq protein were involved in 20E-induced CaMKII phosphorylation by RNA interference analysis. 20E regulated CaMKII threonine phosphorylation at amino acid 290, thereby inducing CaMKII nuclear translocation. CaMKII knockdown by dsCaMKII injection into the larvae prevented the occurrence of larval-pupal transition and suppressed 20E response gene expression. CaMKII phosphorylation and nuclear translocation maintained USP1 lysine acetylation at amino acid 303 by inducing histone deacetylase 3 phosphorylation and nuclear export. The lysine acetylation of USP1 was necessary for the interaction of USP1 with EcRB1 and their binding to the ecdysone response element. Results suggest that 20E (via GPCR activation and calcium signaling) activates CaMKII phosphorylation and nuclear translocation, which regulate USP1 lysine acetylation to form an EcRB1-USP1 complex for 20E response gene transcription.


Calmodulin variant E140G associated with long QT syndrome impairs CaMKIIδ autophosphorylation and L-type calcium channel inactivation.

  • Ohm Prakash‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: