Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,359 papers

Structure of a mammalian ryanodine receptor.

  • Ran Zalk‎ et al.
  • Nature‎
  • 2015‎

Ryanodine receptors (RyRs) mediate the rapid release of calcium (Ca(2+)) from intracellular stores into the cytosol, which is essential for numerous cellular functions including excitation-contraction coupling in muscle. Lack of sufficient structural detail has impeded understanding of RyR gating and regulation. Here we report the closed-state structure of the 2.3-megadalton complex of the rabbit skeletal muscle type 1 RyR (RyR1), solved by single-particle electron cryomicroscopy at an overall resolution of 4.8 Å. We fitted a polyalanine-level model to all 3,757 ordered residues in each protomer, defining the transmembrane pore in unprecedented detail and placing all cytosolic domains as tertiary folds. The cytosolic assembly is built on an extended α-solenoid scaffold connecting key regulatory domains to the pore. The RyR1 pore architecture places it in the six-transmembrane ion channel superfamily. A unique domain inserted between the second and third transmembrane helices interacts intimately with paired EF-hands originating from the α-solenoid scaffold, suggesting a mechanism for channel gating by Ca(2+).


Inhibitory ryanodine prevents ryanodine receptor-mediated Ca²⁺ release without affecting endoplasmic reticulum Ca²⁺ content in primary hippocampal neurons.

  • Tatiana Adasme‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Ryanodine is a cell permeant plant alkaloid that binds selectively and with high affinity to ryanodine receptor (RyR) Ca(2+) release channels. Sub-micromolar ryanodine concentrations activate RyR channels while micromolar concentrations are inhibitory. Several reports indicate that neuronal synaptic plasticity, learning and memory require RyR-mediated Ca(2+)-release, which is essential for muscle contraction. The use of micromolar (inhibitory) ryanodine represents a common strategy to suppress RyR activity in neuronal cells: however, micromolar ryanodine promotes RyR-mediated Ca(2+) release and endoplasmic reticulum Ca(2+) depletion in muscle cells. Information is lacking in this regard in neuronal cells; hence, we examined here if addition of inhibitory ryanodine elicited Ca(2+) release in primary hippocampal neurons, and if prolonged incubation of primary hippocampal cultures with inhibitory ryanodine affected neuronal ER calcium content. Our results indicate that inhibitory ryanodine does not cause Ca(2+) release from the ER in primary hippocampal neurons, even though ryanodine diffusion should produce initially low intracellular concentrations, within the RyR activation range. Moreover, neurons treated for 1 h with inhibitory ryanodine had comparable Ca(2+) levels as control neurons. These combined findings imply that prolonged incubation with inhibitory ryanodine, which effectively abolishes RyR-mediated Ca(2+) release, preserves ER Ca(2+) levels and thus constitutes a sound strategy to suppress neuronal RyR function.


Ryanodine receptors: how many, where and why?

  • V Sorrentino‎ et al.
  • Trends in pharmacological sciences‎
  • 1993‎

Ryanodine receptors are intracellular Ca2+ channels that have been known for more than a decade to have a role in releasing Ca2+ from the sarcoplasmic reticulum to regulate contraction in skeletal and cardiac muscle fibres. Vincenzo Sorrentino and Pompeo Volpe review some recent developments: the ryanodine receptor channels have now been found to be expressed in the central nervous system, and the cloning of a third ryanodine receptor gene (RYR3) has revealed that this new isoform is widely expressed in several tissues and cells. In consequence, the view of ryanodine receptors as Ca2+ channels of muscle cells is rapidly changing, and these channels seem set to take a more central position on the stage of intracellular Ca2+ signalling.


Ryanodine receptors: allosteric ion channel giants.

  • Filip Van Petegem‎
  • Journal of molecular biology‎
  • 2015‎

The endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR) form major intracellular Ca(2+) stores. Ryanodine receptors (RyRs) are large tetrameric ion channels in the SR and ER membranes that can release Ca(2+) upon triggering. With molecular masses exceeding 2.2MDa, they represent the pinnacle of ion channel complexity. RyRs have adopted long-range allosteric mechanisms, with pore opening resulting in conformational changes over 200Å away. Together with tens of protein and small molecule modulators, RyRs have adopted rich and complex regulatory mechanisms. Structurally related to inositol-1,4,5-trisphosphate receptors (IP3Rs), RyRs have been studied extensively using cryo-electron microscopy (cryo-EM). Along with more recent X-ray crystallographic analyses of individual domains, these have resulted in pseudo-atomic models. Over 500 mutations in RyRs have been linked to severe genetic disorders, which underscore their role in the contraction of cardiac and skeletal muscles. Most of these have been linked to gain-of-function phenotypes, resulting in premature or prolonged leak of Ca(2+) in the cytosol. This review outlines our current knowledge on the structure of RyRs at high and low resolutions, their relationship to IP3Rs, an overview of the most commonly studied regulatory mechanisms, and models that relate disease-causing mutations to altered channel function.


Flux regulation of cardiac ryanodine receptor channels.

  • Yiwei Liu‎ et al.
  • The Journal of general physiology‎
  • 2010‎

The cardiac type 2 ryanodine receptor (RYR2) is activated by Ca2+-induced Ca2+ release (CICR). The inherent positive feedback of CICR is well controlled in cells, but the nature of this control is debated. Here, we explore how the Ca2+ flux (lumen-to-cytosol) carried by an open RYR2 channel influences its own cytosolic Ca2+ regulatory sites as well as those on a neighboring channel. Both flux-dependent activation and inhibition of single channels were detected when there were super-physiological Ca2+ fluxes (>3 pA). Single-channel results indicate a pore inhibition site distance of 1.2 +/- 0.16 nm and that the activation site on an open channel is shielded/protected from its own flux. Our results indicate that the Ca2+ flux mediated by an open RYR2 channel in cells (approximately 0.5 pA) is too small to substantially regulate (activate or inhibit) the channel carrying it, even though it is sufficient to activate a neighboring RYR2 channel.


Location of ryanodine and dihydropyridine receptors in frog myocardium.

  • Pierre Tijskens‎ et al.
  • Biophysical journal‎
  • 2003‎

Frog myocardium depends almost entirely on calcium entry from extracellular spaces for its beat-to-beat activation. Atrial myocardium additionally shows internal calcium release under certain conditions, but internal release in the ventricle is absent or very low. We have examined the content and distribution of the sarcoplasmic reticulum (SR) calcium release channels (ryanodine receptors, RyRs) and the surface membrane calcium channels (dihydropyridine receptors, DHPRs) in myocardium from the two atria and the ventricle of the frog heart using binding of radioactive ryanodine, immunolabeling of RyR and DHPR, and thin section and freeze-fracture electron microscopy. In cells from both types of chambers, the SR forms peripheral couplings and in both chambers peripheral couplings colocalize with clusters of DHPRs. However, although a low level of high affinity binding of ryanodine is detectable and RyRs are present in peripheral couplings of the atrium, the ventricle shows essentially no ryanodine binding and RyRs are not detectable either by electron microscopy or immunolabeling. The results are consistent with the lack of internal calcium release in the ventricle, and raise questions regarding the significance of DHPR at peripheral couplings in the absence of RyR. Interestingly, the free SR membrane in both heart chambers shows a low but equal density of intramembrane particles representing the Ca(2+) ATPase.


S-Adenosyl-l-methionine activates the cardiac ryanodine receptor.

  • Angela J Kampfer‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [(3)H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.


Intracellular Zinc Modulates Cardiac Ryanodine Receptor-mediated Calcium Release.

  • Jason Woodier‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Aberrant Zn(2+) homeostasis is a hallmark of certain cardiomyopathies associated with altered contractile force. In this study, we addressed whether Zn(2+) modulates cardiac ryanodine receptor gating and Ca(2+) dynamics in isolated cardiomyocytes. We reveal that Zn(2+) is a high affinity regulator of RyR2 displaying three modes of operation. Picomolar free Zn(2+) concentrations potentiate RyR2 responses, but channel activation is still dependent on the presence of cytosolic Ca(2+). At concentrations of free Zn(2+) >1 nm, Zn(2+) is the main activating ligand, and the dependence on Ca(2+) is removed. Zn(2+) is therefore a higher affinity activator of RyR2 than Ca(2+). Millimolar levels of free Zn(2+) were found to inhibit channel openings. In cardiomyocytes, consistent with our single channel results, we show that Zn(2+) modulates both the frequency and amplitude of Ca(2+) waves in a concentration-dependent manner and that physiological levels of Zn(2+) elicit Ca(2+) release in the absence of activating levels of cytosolic Ca(2+). This highlights a new role for intracellular Zn(2+) in shaping Ca(2+) dynamics in cardiomyocytes through modulation of RyR2 gating.


Functional groups of ryanodine receptors in rat ventricular cells.

  • V Lukyanenko‎ et al.
  • The Journal of physiology‎
  • 2007‎

Ryanodine receptors (RyR2s) are ion channels in the sarcoplasmic reticulum (SR) that are responsible for Ca2+ release in rat ventricular myocytes. Localization of RyR2s is therefore crucial for our understanding of contraction and other Ca2+-dependent intracellular processes. Recent results (e.g. circular waves and Ca2+ sparks in perinuclear area) raised questions about the classical views of RyR2 distribution and organization within ventricular cells. A Ca2+ spark is a fluorescent signal reflecting the activation of a small group of RyR2s. Frequency and spatio-temporal characteristics of Ca2+ sparks depend on the state of cytoplasmic and intraluminal macromolecular complexes regulating cardiac RyR2 function. We employed electron microscopy, confocal imaging of spontaneous Ca2+ sparks and immunofluorescence to visualize the distribution of RyR2s in ventricular myocytes and to evaluate the local involvement of the macromolecular complexes in regulation of functional activity of the RyR2 group. An electron microscopy study revealed that the axial tubules of the transverse-axial tubular system probably do not have junctions with the network SR (nSR). The nSR was found to be wrapped around intermyofibrillar mitochondria and contained structures similar to feet of the junctional cleft. Treatment of ventricular myocytes with antibodies against RyR2 showed that in addition to the junctional SR, a small number of RyR2s can be localized at the middle of the sarcomere and in the zone of perinuclear mitochondria. Recordings of spontaneous Ca2+ sparks showed the existence of functional groups of RyR2s in these intracellular compartments. We found that within the sarcomere about 20% of Ca2+ sparks were not colocalized with the zone of the junctional or corbular SR (Z-line zone). The spatio-temporal characteristics of sparks found in the Z-line and A-band zones were very similar, whereas sparks from the zone of the perinuclear mitochondria were about 25% longer. Analysis of the initiation sites of Ca2+ sparks within the same junctional SR cluster suggested that 18-25 RyR2s are in the functional group producing a spark. Because of the similarity of the spatio-temporal characteristics of sarcomeric sparks and ultrastructural characteristics of nSR, we suggest that the functional groups of RyR2s in the middle of the sarcomere are macromolecular complexes of approximately 20 RyR2s with regulatory proteins. Our data allowed us to conclude that a significant number of functional RyR2s is located in the middle of the sarcomere and in the zone of perinuclear mitochondria. These RyR2s could contribute to excitation-contraction coupling, mitochondrial and nuclear signalling, and Ca2+-dependent gene regulation, but their existence raises many additional questions.


Ryanodine receptors contribute to the induction of ischemic tolerance.

  • Emi Nakamura-Maruyama‎ et al.
  • Brain research bulletin‎
  • 2016‎

Ischemic tolerance (IT) is induced by a variety of insults to the brain (e.g., nonfatal ischemia, heat and hypoxia) and it provides a strong neuroprotective effect. Although the mechanisms are still not fully elucidated, Ca(2+) is regarded as a key mediator of IT. Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores. In brain, neuronal RyRs are thought to play a role in various neuropathological conditions, including ischemia. The purpose of the present study was to investigate the involvement of RyRs in IT. Pretreatment with a RyR antagonist, dantrolene (25mg/kg, i.p), blocked IT in a gerbil global ischemia model, while a RyR agonist, caffeine (100mg/kg, i.p), stimulated the production of IT. In vitro, using rat hippocampal cells, short-term oxygen/glucose deprivation induced preconditioning and RyR antagonists, dantrolene (50 and 100 μM) and ryanodine (100 and 200 μM) prevented it. RyR protein and mRNA levels were transiently decreased after induction of IT. These results suggest that RyRs are involved in the induction of ischemic tolerance.


Methanethiosulfonate derivatives inhibit current through the ryanodine receptor/channel.

  • K E Quinn‎ et al.
  • The Journal of general physiology‎
  • 1997‎

To identify regions of the ryanodine receptor (RyR) important for ion conduction we modified the channel with sulfhydryl-reacting compounds. After addition of methanethiosulfonate (MTS) compounds channel conductance was decreased while other channel properties, including channel regulation by ATP, caffeine, or Ca, were unaffected. The site of action was accessible to the MTS compounds from the cytoplasmic, but not the luminal, side of the channel. In addition, the hydrophilic MTS compounds were only effective when the channel was open, suggesting that the compounds covalently modify the channel from within the water-filled ion conducting pathway. The decrease in channel current amplitude occurred in a step-wise fashion and was irreversible and cumulative over time, eventually leading to the complete block of channel current. However, the time required for each consecutive modification during continuous exposure to the MTS compounds increased, suggesting that successive modification by the MTS compounds is not independent. These results are consistent with the hypothesis that the channel forms a wide vestibule on the cytoplasmic side and contains a much smaller opening on the luminal side. Furthermore, our results indicate that the MTS compounds can serve as functional markers for specific residues of the RyR to be identified in molecular studies.


Effects of valproate on neurotransmission associated with ryanodine receptors.

  • Shukuko Yoshida‎ et al.
  • Neuroscience research‎
  • 2010‎

To clarify the antiepileptic mechanisms of valproate (VPA), we determined the effects of acute and sub-acute administrations of VPA on ryanodine receptor (RyR)-associated hippocampal releases of GABA and glutamate using microdialysis, as well expression of mRNA and protein of RyR subtypes in the rat hippocampus. Acute administration of therapeutic-relevant VPA did not affect the hippocampal extracellular levels of GABA or glutamate, whereas sub-acute administration increased GABA level without affecting that of glutamate. Perfusion with ryanodine increased the hippocampal extracellular level of glutamate (ryanodine concentration range: 1-1000μM) concentration-dependently; however, that of GABA was increased by 1-100μM ryanodine concentration-dependently but the stimulatory effects of 1000μM ryanodine on GABA release was not observed. Both acute and sub-acute administrations of therapeutic-relevant VPA inhibited ryanodine-induced responses of hippocampal extracellular glutamate level without affecting that of GABA. Especially, both acute and sub-acute administrations of VPA prevented the breakdown of GABA release induced by 1000μM ryanodine. Sub-acute administration of therapeutically-relevant dose VPA weakly increased RyR mRNA expression but we could not detect the changes of RyR protein expression in rat hippocampus. These results suggest that VPA inhibited the neurotransmitter release associated with RyR without affecting the expression of RyR protein. Therefore, the antiepileptic action of VPA seems to be mediated, at least in part, by an increase in basal GABA release and inhibition of RyR-associated glutamate release.


Influence of Lipid Mimetics on Gating of Ryanodine Receptor.

  • Katrien Willegems‎ et al.
  • Structure (London, England : 1993)‎
  • 2018‎

Understanding gating principles of ion channels at high resolution is of great importance. Here we investigate the conformational transition from closed to open state in ryanodine receptor 1 (RyR1) reconstituted into lipid nanodiscs. RyR1 is a homotetrameric giant ion channel that couples excitation of muscle cells to fast calcium release from the sarcoplasmic reticulum. Using single-particle cryo-EM we show that RyR1 reconstituted into lipid nanodiscs is stabilized in the open conformation when bound to the plant toxin ryanodine, but not in the presence of its physiological activators, calcium and ATP. Further, using ryanodine binding assays we show that membrane mimetics influence RyR1 transition between closed and open-channel conformations. We find that all detergents, including fluorinated detergents added to nanodiscs, stabilize closed state of RyR1. Our biochemical results correlate with available structural data and suggest optimal conditions for structural studies of RyR1 gating.


Functional ryanodine receptors in the membranes of neurohypophysial secretory granules.

  • James M McNally‎ et al.
  • The Journal of general physiology‎
  • 2014‎

Highly localized Ca(2+) release events have been characterized in several neuronal preparations. In mouse neurohypophysial terminals (NHTs), such events, called Ca(2+) syntillas, appear to emanate from a ryanodine-sensitive intracellular Ca(2+) pool. Traditional sources of intracellular Ca(2+) appear to be lacking in NHTs. Thus, we have tested the hypothesis that large dense core vesicles (LDCVs), which contain a substantial amount of calcium, represent the source of these syntillas. Here, using fluorescence immunolabeling and immunogold-labeled electron micrographs of NHTs, we show that type 2 ryanodine receptors (RyRs) are localized specifically to LDCVs. Furthermore, a large conductance nonspecific cation channel, which was identified previously in the vesicle membrane and has biophysical properties similar to that of an RyR, is pharmacologically affected in a manner characteristic of an RyR: it is activated in the presence of the RyR agonist ryanodine (at low concentrations) and blocked by the RyR antagonist ruthenium red. Additionally, neuropeptide release experiments show that these same RyR agonists and antagonists modulate Ca(2+)-elicited neuropeptide release from permeabilized NHTs. Furthermore, amperometric recording of spontaneous release events from artificial transmitter-loaded terminals corroborated these ryanodine effects. Collectively, our findings suggest that RyR-dependent syntillas could represent mobilization of Ca(2+) from vesicular stores. Such localized vesicular Ca(2+) release events at the precise location of exocytosis could provide a Ca(2+) amplification mechanism capable of modulating neuropeptide release physiologically.


A skeletal muscle ryanodine receptor interaction domain in triadin.

  • Elize Wium‎ et al.
  • PloS one‎
  • 2012‎

Excitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain. Peptides corresponding to Trisk 95 residues 200-232 or 200-231 bound to RyR1 and increased the single channel activity of RyR1 by 1.49 ± 0.11-fold and 1.8 ± 0.15-fold respectively, when added to its luminal side. A similar increase in [(3)H]ryanodine binding, which reflects open probability of the channels, was also observed. This RyR1 activation is similar to activation induced by full length Trisk 95. Circular dichroism showed that both peptides were intrinsically disordered, suggesting a defined secondary structure is not necessary to mediate RyR1 activation. These data for the first time demonstrate that Trisk 95's 200-231 region is responsible for RyR1 activation. Furthermore, it shows that no secondary structure is required to achieve this activation, the Trisk 95 residues themselves are critical for the Trisk 95-RyR1 interaction.


Identification of a dihydropyridine scaffold that blocks ryanodine receptors.

  • Gihan S Gunaratne‎ et al.
  • iScience‎
  • 2022‎

Ryanodine receptors (RyRs) are large, intracellular ion channels that control Ca2+ release from the sarco/endoplasmic reticulum. Dysregulation of RyRs in skeletal muscle, heart, and brain has been implicated in various muscle pathologies, arrhythmia, heart failure, and Alzheimer's disease. Therefore, there is considerable interest in therapeutically targeting RyRs to normalize Ca2+ homeostasis in scenarios involving RyR dysfunction. Here, a simple invertebrate screening platform was used to discover new chemotypes targeting RyRs. The approach measured Ca2+ signals evoked by cyclic adenosine 5'-diphosphate ribose, a second messenger that sensitizes RyRs. From a 1,534-compound screen, FLI-06 (currently described as a Notch "inhibitor") was identified as a potent blocker of RyR activity. Two closely related tyrosine kinase inhibitors that stimulate and inhibit Ca2+ release through RyRs were also resolved. Therefore, this simple screen yielded RyR scaffolds tractable for development and revealed an unexpected linkage between RyRs and trafficking events in the early secretory pathway.


Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes.

  • Ye Chen-Izu‎ et al.
  • Biophysical journal‎
  • 2006‎

The clustering of ryanodine receptors (RyR2) into functional Ca2+ release units is central to current models for cardiac excitation-contraction (E-C) coupling. Using immunolabeling and confocal microscopy, we have analyzed the distribution of RyR2 clusters in rat and ventricular atrial myocytes. The resolution of the three-dimensional structure was improved by a novel transverse sectioning method as well as digital deconvolution. In contrast to earlier reports, the mean RyR2 cluster transverse spacing was measured 1.05 microm in ventricular myocytes and estimated 0.97 microm in atrial myocytes. Intercalated RyR2 clusters were found interspersed between the Z-disks on the cell periphery but absent in the interior, forming double rows flanking the local Z-disks on the surface. The longitudinal spacing between the adjacent rows of RyR2 clusters on the Z-disks was measured to have a mean value of 1.87 microm in ventricular and 1.69 microm in atrial myocytes. The measured RyR2 cluster distribution is compatible with models of Ca2+ wave generation. The size of the typical RyR2 cluster was close to 250 nm, and this suggests that approximately 100 RyR2s might be present in a cluster. The importance of cluster size and three-dimensional spacing for current E-C coupling models is discussed.


FRET-based trilateration of probes bound within functional ryanodine receptors.

  • Bengt Svensson‎ et al.
  • Biophysical journal‎
  • 2014‎

To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.


Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain.

  • Ahmed Handhle‎ et al.
  • Journal of cell science‎
  • 2016‎

Cardiac muscle contraction requires sarcoplasmic reticulum (SR) Ca2+ release mediated by the quaternary complex comprising the ryanodine receptor 2 (RyR2), calsequestrin 2 (CSQ2), junctin (encoded by ASPH) and triadin. Here, we demonstrate that a direct interaction exists between RyR2 and CSQ2. Topologically, CSQ2 binding occurs at the first luminal loop of RyR2. Co-expression of RyR2 and CSQ2 in a human cell line devoid of the other quaternary complex proteins results in altered Ca2+-release dynamics compared to cells expressing RyR2 only. These findings provide a new perspective for understanding the SR luminal Ca2+ sensor and its involvement in cardiac physiology and disease.


Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation.

  • Haikel Dridi‎ et al.
  • Free radical biology & medicine‎
  • 2020‎

Ventilator-induced diaphragm dysfunction (VIDD) increases morbidity and mortality in critical care patients. Although VIDD has been associated with mitochondrial oxidative stress and calcium homeostasis impairment, the underling mechanisms are still unknown. We hypothesized that diaphragmatic mitochondrial oxidative stress causes remodeling of the ryanodine receptor (RyR1)/calcium release channel, contributing to sarcoplasmic reticulum (SR) Ca2+ leak, proteolysis and VIDD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: