2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Development of Nanoparticle Adaptation Phenomena in Acinetobacter baumannii: Physiological Change and Defense Response.

  • Oliver McNeilly‎ et al.
  • Microbiology spectrum‎
  • 2023‎

The present work describes the evolution of a resistance phenotype to a multitargeting antimicrobial agent, namely, silver nanoparticles (nanosilver; NAg), in the globally prevalent bacterial pathogen Acinetobacter baumannii. The Gram-negative bacterium has recently been listed as a critical priority pathogen requiring novel treatment options by the World Health Organization. Through prolonged exposure to the important antimicrobial nanoparticle, the bacterium developed mutations in genes that encode the protein subunits of organelle structures that are involved in cell-to-surface attachment as well as in a cell envelope capsular polysaccharide synthesis-related gene. These mutations are potentially correlated with stable physiological changes in the biofilm growth behavior and with an evident protective effect against oxidative stress, most likely as a feature of toxicity defense. We further report a different adaptation response of A. baumannii to the cationic form of silver (Ag+). The bacterium developed a tolerance phenotype to Ag+, which was correlated with an indicative surge in respiratory activity and changes in cell morphology, of which these are reported characteristics of tolerant bacterial populations. The findings regarding adaptation phenomena to NAg highlight the risks of the long-term use of the nanoparticle on a priority pathogen. The findings urge the implementation of strategies to overcome bacterial NAg adaptation, to better elucidate the toxicity mechanisms of the nanoparticle, and preserve the efficacy of the potent alternative antimicrobial agent in this era of antimicrobial resistance. IMPORTANCE Several recent studies have reported on the development of bacterial resistance to broad-spectrum antimicrobial silver nanoparticles (nanosilver; NAg). NAg is currently one of the most important alternative antimicrobial agents. However, no studies have yet established whether Acinetobacter baumannii, a globally prevalent nosocomial pathogen, can develop resistance to the nanoparticle. The study herein describes how a model strain of A. baumannii with no inherent silver resistance determinants developed resistance to NAg, following prolonged exposure. The stable physiological changes are correlated with mutations detected in the bacterium genome. These mutations render the bacterium capable of proliferating at a toxic NAg concentration. It was also found that A. baumannii developed a "slower-to-kill" tolerance trait to Ag+, which highlights the unique antimicrobial activities between the nanoparticulate and the ionic forms of silver. Despite the proven efficacy of NAg, the observation of NAg resistance in A. baumannii emphasises the potential risks of the repeated overuse of this agent on a priority pathogen.


Evaluating transient phenomena by wavelet analysis: early recovery to exercise.

  • Lana Kralj‎ et al.
  • American journal of physiology. Heart and circulatory physiology‎
  • 2024‎

Wavelet analysis (WA) provides superior time-frequency decomposition of complex signals than conventional spectral analysis tools. To illustrate its usefulness in assessing transient phenomena, we applied a custom-developed WA algorithm to laser-Doppler (LD) signals of the cutaneous microcirculation measured at glabrous (finger pulp) and nonglabrous (forearm) sites during early recovery after dynamic exercise. This phase, importantly contributing to the establishment of thermal homeostasis after exercise cessation, has not been adequately explored because of its complex, transient form. Using WA, we decomposed the LD signals measured during the baseline and early recovery into power spectra of characteristic frequency intervals corresponding to endothelial nitric oxide (NO)-dependent, neurogenic, myogenic, respiratory, and cardiac physiological influence. Assessment of relative power (RP), defined as the ratio between the median power in the frequency interval and the median power of the total spectrum, revealed that endothelial NO-dependent (5.87 early recovery; 1.53 baseline; P = 0.005; Wilcoxon signed-rank test) and respiratory (0.71 early recovery; 0.40 baseline; P = 0.001) components were significantly increased, and myogenic component (1.35 early recovery; 1.83 baseline; P = 0.02) significantly decreased during early recovery in the finger pulp. In the forearm, only the RP of the endothelial NO-dependent (1.90 early recovery; 0.94 baseline; P = 0.009) component was significantly increased. WA presents an irreplaceable tool for the assessment of transient phenomena. The relative contribution of the physiological mechanisms controlling the microcirculatory response in the early recovery phase appears to differ in glabrous and nonglabrous skin when compared with baseline; moreover, the endothelial NO-dependent influence seems to play an important role.NEW & NOTEWORTHY We address the applicability of wavelet analysis (WA) in evaluating transient phenomena on a model of early recovery to exercise, which is the only exercise-associated phase characterized by a distinct transient shape and as such cannot be assessed using conventional tools. Our WA-based algorithm provided a reliable spectral decomposition of laser-Doppler (LD) signals in early recovery, enabling us to speculate roughly on the mechanisms involved in the regulation of skin microcirculation in this phase.


Exhaled breath compositions under varying respiratory rhythms reflects ventilatory variations: translating breathomics towards respiratory medicine.

  • Pritam Sukul‎ et al.
  • Scientific reports‎
  • 2020‎

Control of breathing is automatic and its regulation is keen to autonomic functions. Therefore, involuntary and voluntary nervous regulation of breathing affects ventilatory variations, which has profound potential to address expanding challenges in contemporary pulmonology. Nonetheless, the fundamental attributes of the aforementioned phenomena are rarely understood and/or investigated. Implementation of unconventional approach like breathomics may leads to a better comprehension of those complexities in respiratory medicine. We applied breath-resolved spirometry and capnometry, non-invasive hemodynamic monitoring along with continuous trace analysis of exhaled VOCs (volatile organic compounds) by means of real-time mass-spectrometry in 25 young and healthy adult humans to investigate any possible mirroring of instant ventilatory variations by exhaled breath composition, under varying respiratory rhythms. Hemodynamics remained unaffected. Immediate changes in measured breath compositions and corresponding variations occurred when respiratory rhythms were switched between spontaneous (involuntary/unsynchronised) and/or paced (voluntary/synchronised) breathing. Such changes in most abundant, endogenous and bloodborne VOCs were closely related to the minute ventilation and end-tidal CO2 exhalation. Unprecedentedly, while preceded by a paced rhythm, spontaneous rhythms in both independent setups became reproducible with significantly (P-value ≤ 0.005) low intra- and inter-individual variation in measured parameters. We modelled breath-resolved ventilatory variations via alveolar isoprene exhalation, which were independently validated with unequivocal precision. Reproducibility i.e. attained via our method would be reliable for human breath sampling, concerning biomarker research. Thus, we may realize the actual metabolic and pathophysiological expressions beyond the everlasting in vivo physiological noise. Consequently, less pronounced changes are often misinterpreted as disease biomarker in cross-sectional studies. We have also provided novel information beyond conventional spirometry and capnometry. Upon clinical translations, our findings will have immense impact on pulmonology and breathomics as they have revealed a reproducible pattern of ventilatory variations and respiratory homeostasis in endogenous VOC exhalations.


Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations.

  • Heta Helakari‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2022‎

The physiological underpinnings of the necessity of sleep remain uncertain. Recent evidence suggests that sleep increases the convection of cerebrospinal fluid (CSF) and promotes the export of interstitial solutes, thus providing a framework to explain why all vertebrate species require sleep. Cardiovascular, respiratory and vasomotor brain pulsations have each been shown to drive CSF flow along perivascular spaces, yet it is unknown how such pulsations may change during sleep in humans. To investigate these pulsation phenomena in relation to sleep, we simultaneously recorded fast fMRI, magnetic resonance encephalography (MREG), and electroencephalography (EEG) signals in a group of healthy volunteers. We quantified sleep-related changes in the signal frequency distributions by spectral entropy analysis and calculated the strength of the physiological (vasomotor, respiratory, and cardiac) brain pulsations by power sum analysis in 15 subjects (age 26.5 ± 4.2 years, 6 females). Finally, we identified spatial similarities between EEG slow oscillation (0.2-2 Hz) power and MREG pulsations. Compared with wakefulness, nonrapid eye movement (NREM) sleep was characterized by reduced spectral entropy and increased brain pulsation intensity. These effects were most pronounced in posterior brain areas for very low-frequency (≤0.1 Hz) vasomotor pulsations but were also evident brain-wide for respiratory pulsations, and to a lesser extent for cardiac brain pulsations. There was increased EEG slow oscillation power in brain regions spatially overlapping with those showing sleep-related MREG pulsation changes. We suggest that reduced spectral entropy and enhanced pulsation intensity are characteristic of NREM sleep. With our findings of increased power of slow oscillation, the present results support the proposition that sleep promotes fluid transport in human brain.SIGNIFICANCE STATEMENT We report that the spectral power of physiological brain pulsation mechanisms driven by vasomotor, respiration, and cardiac rhythms in human brain increase during sleep, extending previous observations of their association with glymphatic brain clearance during sleep in rodents. The magnitudes of increased pulsations follow the rank order of vasomotor greater than respiratory greater than cardiac pulsations, with correspondingly declining spatial extents. Spectral entropy, previously known as vigilance and as an anesthesia metric, decreased during NREM sleep compared with the awake state in very low and respiratory frequencies, indicating reduced signal complexity. An EEG slow oscillation power increase occurring in the early sleep phase (NREM 1-2) spatially overlapped with pulsation changes, indicating reciprocal mechanisms between those measures.


Brain Acetaldehyde Exposure Impacts upon Neonatal Respiratory Plasticity and Ethanol-Related Learning in Rodents.

  • María B Acevedo‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2017‎

Prior studies indicate that neonates are very sensitive to ethanol's positive reinforcing effects and to its depressant effects upon breathing. Acetaldehyde (ACD) appears to play a major role in terms of modulating early reinforcing effects of the drug. Yet, there is no pre-existing literature relative to the incidence of this metabolite upon respiratory plasticity. The present study analyzed physiological and behavioral effects of early central administrations of ethanol, acetaldehyde or vehicle. Respiration rates (breaths/min) were registered at post-natal days (PDs) 2 and 4 (post-administration time: 5, 60, or 120 min). At PD5, all pups were placed in a context (plethysmograph) where they had previously experienced the effects of central administrations and breathing patterns were recorded. Following this test, pups were evaluated using and operant conditioning procedure where ethanol or saccharin served as positive reinforcers. Body temperatures were also registered prior to drug administrations as well as at the beginning and the end of each specific evaluation. Across days, breathing responses were high at the beginning of the evaluation session and progressively declined as a function of the passage of time. At PDs 2 and 4, shortly after central administration (5 min), ACD exerted a significant depression upon respiration frequencies. At PD5, non-intoxicated pups with a prior history of ACD central administrations, exhibited a marked increase in respiratory frequencies; a result that probably indicates a conditioned compensatory response. When operant testing procedures were conducted, prior ethanol or ACD central administrations were found to reduce the reinforcing effects of ethanol. This was not the case when saccharin was employed as a reinforcer. As a whole, the results indicate a significant role of central ACD upon respiratory plasticity of the neonate and upon ethanol's reinforcing effects; phenomena that affect the physiological integrity of the immature organism and its subsequent affinity for ethanol operationalized through self-administration procedures.


The Effect of Low-Frequency Physiological Correction on the Reproducibility and Specificity of Resting-State fMRI Metrics: Functional Connectivity, ALFF, and ReHo.

  • Ali M Golestani‎ et al.
  • Frontiers in neuroscience‎
  • 2017‎

The resting-state fMRI (rs-fMRI) signal is affected by a variety of low-frequency physiological phenomena, including variations in cardiac-rate (CRV), respiratory-volume (RVT), and end-tidal CO2 (PETCO2). While these effects have become better understood in recent years, the impact that their correction has on the quality of rs-fMRI measurements has yet to be clarified. The objective of this paper is to investigate the effect of correcting for CRV, RVT and PETCO2 on the rs-fMRI measurements. Nine healthy subjects underwent a test-retest rs-fMRI acquisition using repetition times (TRs) of 2 s (long-TR) and 0.323 s (short-TR), and the data were processed using eight different physiological correction strategies. Subsequently, regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and resting-state connectivity of the motor and default-mode networks are calculated for each strategy. Reproducibility is calculated using intra-class correlation and the Dice Coefficient, while the accuracy of functional-connectivity measures is assessed through network separability, sensitivity and specificity. We found that: (1) the reproducibility of the rs-fMRI measures improved significantly after correction for PETCO2; (2) separability of functional networks increased after PETCO2 correction but was not affected by RVT and CRV correction; (3) the effect of physiological correction does not depend on the data sampling-rate; (4) the effect of physiological processes and correction strategies is network-specific. Our findings highlight limitations in our understanding of rs-fMRI quality measures, and underscore the importance of using multiple quality measures to determine the optimal physiological correction strategy.


Tidal changes in PaO2 and their relationship to cyclical lung recruitment/derecruitment in a porcine lung injury model.

  • D C Crockett‎ et al.
  • British journal of anaesthesia‎
  • 2019‎

Tidal recruitment/derecruitment (R/D) of collapsed regions in lung injury has been presumed to cause respiratory oscillations in the partial pressure of arterial oxygen (PaO2). These phenomena have not yet been studied simultaneously. We examined the relationship between R/D and PaO2 oscillations by contemporaneous measurement of lung-density changes and PaO2.


Preliminary Evidence of Reduced Urge to Cough and Cough Response in Four Individuals following Remote Traumatic Brain Injury with Tracheostomy.

  • Erin Silverman‎ et al.
  • Canadian respiratory journal‎
  • 2016‎

Cough and swallow protect the lungs and are frequently impaired following traumatic brain injury (TBI). This project examined cough response to inhaled capsaicin solution challenge in a cohort of four young adults with a history of TBI within the preceding five years. All participants had a history of tracheostomy with subsequent decannulation and dysphagia after their injuries (resolved for all but one participant). Urge to cough (UTC) and cough response were measured and compared to an existing database of normative cough response data obtained from 32 healthy controls (HCs). Participants displayed decreased UTC and cough responses compared to HCs. It is unknown if these preliminary results manifest as a consequence of disrupted sensory (afferent) projections, an inability to perceive or discriminate cough stimuli, disrupted motor (efferent) response, peripheral weakness, or any combination of these factors. Future work should attempt to clarify if the observed phenomena are borne out in a larger sample of individuals with TBI, determine the relative contributions of central versus peripheral nervous system structures to cough sensory perceptual changes following TBI (should they exist), and formulate recommendations for systematic screening and assessment of cough sensory perception in order to facilitate rehabilitative efforts. This project is identified with the National Clinical Trials NCT02240329.


Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

  • Thomas E Dick‎ et al.
  • Frontiers in physiology‎
  • 2012‎

Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.


The combination of ribose and adenine promotes adenosine release and attenuates the intensity and frequency of epileptiform activity in hippocampal slices: Evidence for the rapid depletion of cellular ATP during electrographic seizures.

  • Jessicka Hall‎ et al.
  • Journal of neurochemistry‎
  • 2018‎

In addition to being the universal cellular energy source, ATP is the primary reservoir for the neuromodulator adenosine. Consequently, adenosine is produced during ATP-depleting conditions, such as epileptic seizures, during which adenosine acts as an anticonvulsant to terminate seizure activity and raise the threshold for subsequent seizures. These actions protect neurones from excessive ionic fluxes and hence preserve the remaining cellular content of ATP. We have investigated the consequences of manipulation of intracellular ATP levels on adenosine release and epileptiform activity in hippocampal slices by pre-incubating slices (3 h) with creatine (1 mM) and the combination of ribose (1 mM) and adenine (50 μM; RibAde). Creatine buffers and protects the concentration of cellular ATP, whereas RibAde restores the reduced cellular ATP in brain slices to near physiological levels. Using electrophysiological recordings and microelectrode biosensors for adenosine, we find that, while having no effect on basal synaptic transmission or paired-pulse facilitation, pre-incubation with creatine reduced adenosine release during Mg2+- free/4-aminopyridine-induced electrographic seizure activity, whereas RibAde increased adenosine release. This increased release of adenosine was associated with an attenuation of both the intensity and frequency of seizure activity. Given the depletion of ATP after injury to the brain, the propensity for seizures after trauma and the risk of epileptogenesis, therapeutic strategies elevating the cellular reservoir of adenosine may have value in the traumatized brain. Ribose and adenine are both in use in man and thus their combination merits consideration as a potential therapeutic for the acutely injured central nervous system.


Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation.

  • Sophie Bagur‎ et al.
  • Nature communications‎
  • 2021‎

Brain-body interactions are thought to be essential in emotions but their physiological basis remains poorly understood. In mice, regular 4 Hz breathing appears during freezing after cue-fear conditioning. Here we show that the olfactory bulb (OB) transmits this rhythm to the dorsomedial prefrontal cortex (dmPFC) where it organizes neural activity. Reduction of the respiratory-related 4 Hz oscillation, via bulbectomy or optogenetic perturbation of the OB, reduces freezing. Behavioural modelling shows that this is due to a specific reduction in freezing maintenance without impacting its initiation, thus dissociating these two phenomena. dmPFC LFP and firing patterns support the region's specific function in freezing maintenance. In particular, population analysis reveals that network activity tracks 4 Hz power dynamics during freezing and reaches a stable state at 4 Hz peak that lasts until freezing termination. These results provide a potential mechanism and a functional role for bodily feedback in emotions and therefore shed light on the historical James-Cannon debate.


Tunicamycin Protects against LPS-Induced Lung Injury.

  • Khadeja-Tul Kubra‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

The pulmonary endothelium is a dynamic semipermeable barrier that orchestrates tissue-fluid homeostasis; regulating physiological and immunological responses. Endothelial abnormalities are caused by inflammatory stimuli interacting with intracellular messengers to remodel cytoskeletal junctions and adhesion proteins. Those phenomena are associated with sepsis, acute lung injury, and acute respiratory distress syndrome. The molecular processes beyond those responses are the main interest of our group. Unfolded protein response (UPR) is a highly conserved molecular pathway resolving protein-folding defects to counteract cellular threats. An emerging body of evidence suggests that UPR is a promising target against lung and cardiovascular disease. In the present study, we reveal that Tunicamycin (TM) (UPR inducer) protects against lipopolysaccharide (LPS)-induced injury. The barrier function of the inflamed endothelium was evaluated in vitro (transendothelial and paracellular permeability); as well as in mice exposed to TM after LPS. Our study demonstrates that TM supports vascular barrier function by modulating actomyosin remodeling. Moreover, it reduces the internalization of vascular endothelial cadherin (VE-cadherin), enhancing endothelial integrity. We suggest that UPR activation may deliver novel therapeutic opportunities in diseases related to endothelial dysregulation.


Model animals for the study of oxidative stress from complex II.

  • Takamasa Ishii‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Mitochondria play a role of energy production and produce intracellular reactive oxygen species (ROS), especially superoxide anion (O2(-)) as a byproduct of energy metabolism at the same time. O2(-) is converted from oxygen and is overproduced by excessive electron leakage from the mitochondrial respiratory chain. It is well known that mitochondrial complexes I and III in the electron transport system are the major endogenous ROS sources. We have previously demonstrated that mutations in complex II can result in excessive ROS (specifically in SDHC: G71E in Caenorhabditis elegans, I71E in Drosophila and V69E in mouse). Moreover, this results in premature death in C. elegans and Drosophila as well as tumorigenesis in mouse embryonic fibroblast cells. In humans, it has been reported that mutations in SDHB, SDHC or SDHD, which are the subunits of mitochondrial complex II, often result in inherited head and neck paragangliomas (PGLs). Recently, we established Tet-mev-1 conditional transgenic mice using our uniquely developed Tet-On/Off system, which can induce the mutated SDHC gene to be equally and competitively expressed compared to the endogenous wild-type SDHC gene. These mice experienced mitochondrial respiratory chain dysfunction that resulted in oxidative stress. The mitochondrial oxidative stress caused excessive apoptosis in several tissues leading to low-birth-weight infants and growth retardation during neonatal developmental phase in Tet-mev-1 mice. Tet-mev-1 mice also displayed precocious age-dependent corneal physiological changes, delayed corneal epithelialization, decreased corneal endothelial cells, thickened Descemet's membrane and thinning of parenchyma with corneal pathological dysfunctions such as keratitis, Fuchs' corneal dystrophy (FCD) and probably keratoconus after the normal development and growth phase. Here, we review the relationships between mitochondrial oxidative stress and phenomena in mev-1 animal models with mitochondrial complex II SDHC mutations. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.


A cluster of neuropeptide S neurons regulates breathing and arousal.

  • Christopher Caleb Angelakos‎ et al.
  • Current biology : CB‎
  • 2023‎

Neuropeptide S (NPS) is a highly conserved peptide found in all tetrapods that functions in the brain to promote heightened arousal; however, the subpopulations mediating these phenomena remain unknown. We generated mice expressing Cre recombinase from the Nps gene locus (NpsCre) and examined populations of NPS+ neurons in the lateral parabrachial area (LPBA), the peri-locus coeruleus (peri-LC) region of the pons, and the dorsomedial thalamus (DMT). We performed brain-wide mapping of input and output regions of NPS+ clusters and characterized expression patterns of the NPS receptor 1 (NPSR1). While the activity of all three NPS+ subpopulations tracked with vigilance state, only NPS+ neurons of the LPBA exhibited both increased activity prior to wakefulness and decreased activity during REM sleep, similar to the behavioral phenotype observed upon NPSR1 activation. Accordingly, we found that activation of the LPBA but not the peri-LC NPS+ neurons increased wake and reduced REM sleep. Furthermore, given the extended role of the LPBA in respiration and the link between behavioral arousal and breathing rate, we demonstrated that the LPBA but not the peri-LC NPS+ neuronal activation increased respiratory rate. Together, our data suggest that NPS+ neurons of the LPBA represent an unexplored subpopulation regulating breathing, and they are sufficient to recapitulate the sleep/wake phenotypes observed with broad NPS system activation.


The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy.

  • Fei Chen‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread worldwide, leading to high morbidity and mortality. As the putative receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) is widely distributed in various tissues and organs of the human body. Simultaneously, ACE2 acts as the physiological counterbalance of ACE providing homeostatic regulation of circulating angiotensin II levels. Given that some ACE2 variants are known to cause an increase in the ligand-receptor affinity, their roles in acquisition, progression and severity of COVID-19 disease have aroused widespread concerns. Therefore, we summarized the latest literature and explored how ACE2 variants and epigenetic factors influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome in aspects of ethnicity, gender and age. Meanwhile, the possible mechanisms for these phenomena were discussed. Notably, recombinant human ACE2 and ACE2-derived peptides may have special benefits for combating SARS-CoV-2 variants and further studies are warranted to confirm their effects in later stages of the disease process. As the uncertainty regarding the severity and transmissibility of disease rises, a more in-depth understanding of the host genetics and functional characteristics of ACE2 variants will not only help explain individual clinical differences of the disease, but also contribute to providing effective measures to develop solutions and manage future outbreaks of SARS-CoV-2.


Novel Mechanical Strain Characterization of Ventilated ex vivo Porcine and Murine Lung using Digital Image Correlation.

  • Crystal A Mariano‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Respiratory illnesses, such as bronchitis, emphysema, asthma, and COVID-19, substantially remodel lung tissue, deteriorate function, and culminate in a compromised breathing ability. Yet, the structural mechanics of the lung is significantly understudied. Classical pressure-volume air or saline inflation studies of the lung have attempted to characterize the organ's elasticity and compliance, measuring deviatory responses in diseased states; however, these investigations are exclusively limited to the bulk composite or global response of the entire lung and disregard local expansion and stretch phenomena within the lung lobes, overlooking potentially valuable physiological insights, as particularly related to mechanical ventilation. Here, we present a method to collect the first non-contact, full-field deformation measures of ex vivo porcine and murine lungs and interface with a pressure-volume ventilation system to investigate lung behavior in real time. We share preliminary observations of heterogeneous and anisotropic strain distributions of the parenchymal surface, associative pressure-volume-strain loading dependencies during continuous loading, and consider the influence of inflation rate and maximum volume. This study serves as a crucial basis for future works to comprehensively characterize the regional response of the lung across various species, link local strains to global lung mechanics, examine the effect of breathing frequencies and volumes, investigate deformation gradients and evolutionary behaviors during breathing, and contrast healthy and pathological states. Measurements collected in this framework ultimately aim to inform predictive computational models and enable the effective development of ventilators and early diagnostic strategies.


Comparative Transcriptomic and Metagenomic Analyses of Influenza Virus-Infected Nasal Epithelial Cells From Multiple Individuals Reveal Specific Nasal-Initiated Signatures.

  • Kai Sen Tan‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

In vitro and in vivo research based on cell lines and animals are likely to be insufficient in elucidating authentic biological and physiological phenomena mimicking human systems, especially for generating pre-clinical data on targets and biomarkers. There is an obvious need for a model that can further bridge the gap in translating pre-clinical findings into clinical applications. We have previously generated a model of in vitro differentiated human nasal epithelial cells (hNECs) which elucidated the nasal-initiated repertoire of immune responses against respiratory viruses such as influenza A virus and rhinovirus. To assess their clinical utility, we performed a microarray analysis of influenza virus-infected hNECs to elucidate nasal epithelial-initiated responses. This was followed by a metagenomic analysis which revealed transcriptomic changes comparable with clinical influenza datasets. The primary target of influenza infection was observed to be the initiator of innate and adaptive immune genes, leaning toward type-1 inflammatory activation. In addition, the model also elucidated a down-regulation of metabolic processes specific to the nasal epithelium, and not present in other models. Furthermore, the hNEC model detected all 11 gene signatures unique to influenza infection identified from a previous study, thus supporting the utility of nasal-based diagnosis in clinical settings. In conclusion, this study highlights that hNECs can serve as a model for nasal-based clinical translational studies and diagnosis to unravel nasal epithelial responses to influenza in the population, and as a means to identify novel molecular diagnostic markers of severity.


Impact of Poor Oral Health on Community-Dwelling Seniors: A Scoping Review.

  • Rana Badewy‎ et al.
  • Health services insights‎
  • 2021‎

The aim of this scoping review was to determine health-related impacts of poor oral health among community-dwelling seniors. Using MeSH terms and keywords such as elderly, general health, geriatrics, 3 electronic databases-Medline, CINAHL, and Age Line were searched. Title and abstracts were independently screened by 3 reviewers, followed by full-texts review. A total of 131 articles met our inclusion criteria, the majority of these studies were prospective cohort (77%, n = 103), and conducted in Japan (42 %, n = 55). These studies were categorized into 16 general health outcomes, with mortality (24%, n = 34), and mental health disorders (21%, n = 30) being the most common outcomes linked with poor oral health. 90% (n = 120) of the included studies reported that poor oral health in seniors can subsequently lead to a higher risk of poor general health outcomes among this population. Improving access to oral healthcare services for elderly can help not only reduce the burden of oral diseases in this population group but also address the morbidity and mortality associated with other general health diseases and conditions caused due to poor oral health. Findings from this study can help identify shortcomings in existing oral healthcare programs for elderly and develop future programs and services to improve access and utilization of oral care services by elderly.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: