Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Model animals for the study of oxidative stress from complex II.

Biochimica et biophysica acta | 2013

Mitochondria play a role of energy production and produce intracellular reactive oxygen species (ROS), especially superoxide anion (O2(-)) as a byproduct of energy metabolism at the same time. O2(-) is converted from oxygen and is overproduced by excessive electron leakage from the mitochondrial respiratory chain. It is well known that mitochondrial complexes I and III in the electron transport system are the major endogenous ROS sources. We have previously demonstrated that mutations in complex II can result in excessive ROS (specifically in SDHC: G71E in Caenorhabditis elegans, I71E in Drosophila and V69E in mouse). Moreover, this results in premature death in C. elegans and Drosophila as well as tumorigenesis in mouse embryonic fibroblast cells. In humans, it has been reported that mutations in SDHB, SDHC or SDHD, which are the subunits of mitochondrial complex II, often result in inherited head and neck paragangliomas (PGLs). Recently, we established Tet-mev-1 conditional transgenic mice using our uniquely developed Tet-On/Off system, which can induce the mutated SDHC gene to be equally and competitively expressed compared to the endogenous wild-type SDHC gene. These mice experienced mitochondrial respiratory chain dysfunction that resulted in oxidative stress. The mitochondrial oxidative stress caused excessive apoptosis in several tissues leading to low-birth-weight infants and growth retardation during neonatal developmental phase in Tet-mev-1 mice. Tet-mev-1 mice also displayed precocious age-dependent corneal physiological changes, delayed corneal epithelialization, decreased corneal endothelial cells, thickened Descemet's membrane and thinning of parenchyma with corneal pathological dysfunctions such as keratitis, Fuchs' corneal dystrophy (FCD) and probably keratoconus after the normal development and growth phase. Here, we review the relationships between mitochondrial oxidative stress and phenomena in mev-1 animal models with mitochondrial complex II SDHC mutations. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

Pubmed ID: 23142169 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NCBI Protein Database (tool)

RRID:SCR_003257

Databases of protein sequences and 3D structures of proteins. Collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB.

View all literature mentions