Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 295 papers

Free Water in White Matter Differentiates MCI and AD From Control Subjects.

  • Matthieu Dumont‎ et al.
  • Frontiers in aging neuroscience‎
  • 2019‎

Recent evidence shows that neuroinflammation plays a role in many neurological diseases including mild cognitive impairment (MCI) and Alzheimer's disease (AD), and that free water (FW) modeling from clinically acquired diffusion MRI (DTI-like acquisitions) can be sensitive to this phenomenon. This FW index measures the fraction of the diffusion signal explained by isotropically unconstrained water, as estimated from a bi-tensor model. In this study, we developed a simple but powerful whole-brain FW measure designed for easy translation to clinical settings and potential use as a priori outcome measure in clinical trials. These simple FW measures use a "safe" white matter (WM) mask without gray matter (GM)/CSF partial volume contamination (WM safe) near ventricles and sulci. We investigated if FW inside the WM safe mask, including and excluding areas of white matter damage such as white matter hyperintensities (WMHs) as shown on T2 FLAIR, computed across the whole white matter could be indicative of diagnostic grouping along the AD continuum. After careful quality control, 81 cognitively normal controls (NC), 103 subjects with MCI and 42 with AD were selected from the ADNIGO and ADNI2 databases. We show that MCI and AD have significantly higher FW measures even after removing all partial volume contamination. We also show, for the first time, that when WMHs are removed from the masks, the significant results are maintained, which demonstrates that the FW measures are not just a byproduct of WMHs. Our new and simple FW measures can be used to increase our understanding of the role of inflammation-associated edema in AD and may aid in the differentiation of healthy subjects from MCI and AD patients.


Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET.

  • Leonardo Iaccarino‎ et al.
  • Annals of clinical and translational neurology‎
  • 2019‎

Imaging biomarkers can be used to screen participants for Alzheimer's disease clinical trials. To test the predictive values in clinical progression of neuropathology change (amyloid-PET) or brain metabolism as neurodegeneration biomarker ([18F]FDG-PET), we evaluated data from N = 268 healthy controls and N = 519 mild cognitive impairment subjects. Despite being a significant risk factor, amyloid positivity was not associated with clinical progression in the majority (≥60%) of subjects. Notably, a negative [18F]FDG-PET scan at baseline strongly predicted clinical stability with high negative predictive values (>0.80) for both groups. We suggest [18F]FDG-PET brain metabolism or other neurodegeneration measures should be coupled to amyloid-PET to exclude clinically stable individuals from clinical trials.


The Function Biomedical Informatics Research Network Data Repository.

  • David B Keator‎ et al.
  • NeuroImage‎
  • 2016‎

The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data.


Ventricular maps in 804 ADNI subjects: correlations with CSF biomarkers and clinical decline.

  • Yi-Yu Chou‎ et al.
  • Neurobiology of aging‎
  • 2010‎

Ideal biomarkers of Alzheimer's disease (AD) should correlate with accepted measures of pathology in the cerebrospinal fluid (CSF); they should also correlate with, or predict, future clinical decline, and should be readily measured in hundreds to thousands of subjects. Here we explored the utility of automated 3D maps of the lateral ventricles as a possible biomarker of AD. We used our multi-atlas fluid image alignment (MAFIA) method, to compute ventricular models automatically, without user intervention, from 804 brain MRI scans with 184 AD, 391 mild cognitive impairment (MCI), and 229 healthy elderly controls (446 men, 338 women; age: 75.50 +/- 6.81 [SD] years). Radial expansion of the ventricles, computed pointwise, was strongly correlated with current cognition, depression ratings, Hachinski Ischemic scores, language scores, and with future clinical decline after controlling for any effects of age, gender, and educational level. In statistical maps ranked by effect sizes, ventricular differences were highly correlated with CSF measures of Abeta(1-42), and correlated with ApoE4 genotype. These statistical maps are highly automated, and offer a promising biomarker of AD for large-scale studies.


Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects.

  • Derrek P Hibar‎ et al.
  • NeuroImage‎
  • 2011‎

Imaging traits provide a powerful and biologically relevant substrate to examine the influence of genetics on the brain. Interest in genome-wide, brain-wide search for influential genetic variants is growing, but has mainly focused on univariate, SNP-based association tests. Moving to gene-based multivariate statistics, we can test the combined effect of multiple genetic variants in a single test statistic. Multivariate models can reduce the number of statistical tests in gene-wide or genome-wide scans and may discover gene effects undetectable with SNP-based methods. Here we present a gene-based method for associating the joint effect of single nucleotide polymorphisms (SNPs) in 18,044 genes across 31,662 voxels of the whole brain in 731 elderly subjects (mean age: 75.56±6.82SD years; 430 males) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Structural MRI scans were analyzed using tensor-based morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an average template image based on healthy elderly subjects. Using the voxel-level volume difference values as the phenotype, we selected the most significantly associated gene (out of 18,044) at each voxel across the brain. No genes identified were significant after correction for multiple comparisons, but several known candidates were re-identified, as were other genes highly relevant to brain function. GAB2, which has been previously associated with late-onset AD, was identified as the top gene in this study, suggesting the validity of the approach. This multivariate, gene-based voxelwise association study offers a novel framework to detect genetic influences on the brain.


Gene interactions and structural brain change in early-onset Alzheimer's disease subjects using the pipeline environment.

  • Seok Woo Moon‎ et al.
  • Psychiatry investigation‎
  • 2015‎

This article investigates subjects aged 55 to 65 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to broaden our understanding of early-onset (EO) cognitive impairment using neuroimaging and genetics biomarkers.


Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects.

  • Katja Franke‎ et al.
  • Frontiers in aging neuroscience‎
  • 2014‎

Aging alters brain structure and function. Personal health markers and modifiable lifestyle factors are related to individual brain aging as well as to the risk of developing Alzheimer's disease (AD). This study used a novel magnetic resonance imaging (MRI)-based biomarker to assess the effects of 17 health markers on individual brain aging in cognitively unimpaired elderly subjects. By employing kernel regression methods, the expression of normal brain-aging patterns forms the basis to estimate the brain age of a given new subject. If the estimated age is higher than the chronological age, a positive brain age gap estimation (BrainAGE) score indicates accelerated atrophy and is considered a risk factor for developing AD. Within this cross-sectional, multi-center study 228 cognitively unimpaired elderly subjects (118 males) completed an MRI at 1.5Tesla, physiological and blood parameter assessments. The multivariate regression model combining all measured parameters was capable of explaining 39% of BrainAGE variance in males (p < 0.001) and 32% in females (p < 0.01). Furthermore, markers of the metabolic syndrome as well as markers of liver and kidney functions were profoundly related to BrainAGE scores in males (p < 0.05). In females, markers of liver and kidney functions as well as supply of vitamin B12 were significantly related to BrainAGE (p < 0.05). In conclusion, in cognitively unimpaired elderly subjects several clinical markers of poor health were associated with subtle structural changes in the brain that reflect accelerated aging, whereas protective effects on brain aging were observed for markers of good health. Additionally, the relations between individual brain aging and miscellaneous health markers show gender-specific patterns. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of subtly abnormal patterns of brain aging probably preceding cognitive decline and development of AD.


Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

  • G Ziegler‎ et al.
  • NeuroImage‎
  • 2014‎

Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease.


3D maps localize caudate nucleus atrophy in 400 Alzheimer's disease, mild cognitive impairment, and healthy elderly subjects.

  • S K Madsen‎ et al.
  • Neurobiology of aging‎
  • 2010‎

MRI research examining structural brain atrophy in Alzheimer's disease (AD) generally focuses on medial temporal and cortical structures, but amyloid and tau deposits also accumulate in the caudate. Here we mapped the 3D profile of caudate atrophy using a surface mapping approach in subjects with AD and mild cognitive impairment (MCI) to identify potential clinical and pathological correlates. 3D surface models of the caudate were automatically extracted from 400 baseline MRI scans (100 AD, 200 MCI, 100 healthy elderly). Compared to controls, caudate volumes were lower in MCI (2.64% left, 4.43% right) and AD (4.74% left, 8.47% right). Caudate atrophy was associated with age, sum-of-boxes and global Clinical Dementia Ratings, Delayed Logical Memory scores, MMSE decline 1 year later, and body mass index. Reduced right (but not left) volume was associated with MCI-to-AD conversion and CSF tau levels. Normal caudate asymmetry (with the right 3.9% larger than left) was lost in AD, suggesting preferential right caudate atrophy. Automated caudate maps may complement other MRI-derived measures of disease burden in AD.


Fine-grained age-matching improves atrophy-based detection of mild cognitive impairment more than amyloid-negative reference subjects.

  • Nils Richter‎ et al.
  • NeuroImage. Clinical‎
  • 2023‎

In clinical practice, differentiating between age-related gray matter (GM) atrophy and neurodegeneration-related atrophy at early disease stages, such as mild cognitive impairment (MCI), remains challenging. We hypothesized that fined-grained adjustment for age effects and using amyloid-negative reference subjects could increase classification accuracy.


Interaction effect of alcohol consumption and Alzheimer disease polygenic risk score on the brain cortical thickness of cognitively normal subjects.

  • William J Matloff‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2020‎

Alcohol consumption and genetic risk for Alzheimer disease (AD) are among many factors known to be associated with brain structure in cognitively healthy adults. It is unclear, however, whether the effect of alcohol consumption on brain structure varies depending on a person's level of genetic risk for AD. We hypothesized that there is an interaction effect of alcohol consumption and a 33-SNP AD polygenic risk score (PRS) on the cortical thickness of brain regions known to be affected early in the course of AD. Studying 6,213 cognitively healthy subjects from the UK Biobank, we found a significant interaction effect of the 33-SNP AD PRS and alcohol consumption on this AD Cortical Thickness Signature. Stratified, among those who consume 12-24 g/day of alcohol, the 33-SNP AD PRS had a significant, positive association with AD Cortical Thickness Signature, with high-risk subjects having the greatest AD Cortical Thickness Signature. There were no significant associations of the 33-SNP AD PRS with AD Cortical Thickness Signature among the nondrinker or <1, 1-6, 6-12, 24-48, or >48 g/day groups. It is unclear whether this interaction is due to a detrimental or beneficial effect of moderate alcohol consumption in those with the highest genetic risk for AD.


Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls.

  • Jonathan H Morra‎ et al.
  • NeuroImage‎
  • 2009‎

As one of the earliest structures to degenerate in Alzheimer's disease (AD), the hippocampus is the target of many studies of factors that influence rates of brain degeneration in the elderly. In one of the largest brain mapping studies to date, we mapped the 3D profile of hippocampal degeneration over time in 490 subjects scanned twice with brain MRI over a 1-year interval (980 scans). We examined baseline and 1-year follow-up scans of 97 AD subjects (49 males/48 females), 148 healthy control subjects (75 males/73 females), and 245 subjects with mild cognitive impairment (MCI; 160 males/85 females). We used our previously validated automated segmentation method, based on AdaBoost, to create 3D hippocampal surface models in all 980 scans. Hippocampal volume loss rates increased with worsening diagnosis (normal=0.66%/year; MCI=3.12%/year; AD=5.59%/year), and correlated with both baseline and interval changes in Mini-Mental State Examination (MMSE) scores and global and sum-of-boxes Clinical Dementia Rating scale (CDR) scores. Surface-based statistical maps visualized a selective profile of ongoing atrophy in all three diagnostic groups. Healthy controls carrying the ApoE4 gene atrophied faster than non-carriers, while more educated controls atrophied more slowly; converters from MCI to AD showed faster atrophy than non-converters. Hippocampal loss rates can be rapidly mapped, and they track cognitive decline closely enough to be used as surrogate markers of Alzheimer's disease in drug trials. They also reveal genetically greater atrophy in cognitively intact subjects.


Basal forebrain atrophy correlates with amyloid β burden in Alzheimer's disease.

  • Georg M Kerbler‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

The brains of patients suffering from Alzheimer's disease (AD) have three classical pathological hallmarks: amyloid-beta (Aβ) plaques, tau tangles, and neurodegeneration, including that of cholinergic neurons of the basal forebrain. However the relationship between Aβ burden and basal forebrain degeneration has not been extensively studied. To investigate this association, basal forebrain volumes were determined from magnetic resonance images of controls, subjects with amnestic mild cognitive impairment (aMCI) and AD patients enrolled in the longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarkers and Lifestyle (AIBL) studies. In the AIBL cohort, these volumes were correlated within groups to neocortical gray matter retention of Pittsburgh compound B (PiB) from positron emission tomography images as a measure of Aβ load. The basal forebrain volumes of AD and aMCI subjects were significantly reduced compared to those of control subjects. Anterior basal forebrain volume was significantly correlated to neocortical PiB retention in AD subjects and aMCI subjects with high Aβ burden, whereas posterior basal forebrain volume was significantly correlated to neocortical PiB retention in control subjects with high Aβ burden. Therefore this study provides new evidence for a correlation between neocortical Aβ accumulation and basal forebrain degeneration. In addition, cluster analysis showed that subjects with a whole basal forebrain volume below a determined cut-off value had a 7 times higher risk of having a worse diagnosis within ~18 months.


A novel individual-level morphological brain networks constructing method and its evaluation in PET and MR images.

  • Jiehui Jiang‎ et al.
  • Heliyon‎
  • 2017‎

Mapping the human brain is one of the great scientific challenges of the 21st century. Brain network analysis is an effective technique based on graph theory that is widely used to investigate network patterns in the human brain. Currently, mapping an individual brain network using a single image has been a hotspot in the field of brain science; techniques, such as the Kullback-Leibler (KL) method, have applications in structural Magnetic Resonance (MR) imaging. However, maintaining an image's intensity, shape, texture and gradient information during feature extraction is very challenging. In this study, we propose a novel method for individual-level network construction based on the high-resolution Brainnetome Atlas, which shows 246 brain regions. Principal components (PCs) were obtained for each brain region using principal component analysis (PCA) for feature extraction. Individual brain networks were followed and used to construct the PC similarity measurement based on the mutual information (MI) method. To evaluate the robustness of the proposed method, three independent experiments were carried out. In the first, 34 healthy subjects underwent two Carbon 11-labeled Pittsburgh compound B Positron emission tomography (11C-PiB PET) scans; in the second, 32 healthy subjects underwent two structural MRI scans; and in the last, 10 Alzheimer's disease (AD) subjects and 10Healthy Control (HC) subjects underwent 11C-PiB PET scans. For each subject, network metrics including clustering coefficient, path length, small-world coefficient, efficiency and node betweenness centrality were calculated. The results suggested that both the individual PET and structural MRI networks exhibited a good small-word property, and the variances within subjects was also quite small in all metrics, The average value of Coefficient of variation (CV) map was 0.33 and 0.32 for PiB PET and MR images respectively, and intra-class correlation coefficients (ICC) range from approximately 0.4 to 0.7, indicating that the new method was well adapted to the subjects. The results of intra-class correlation coefficients from the test-retest experiment were consistent with previous research employing KL divergence, but with low computational complexity. Further, differences between AD subjects and HC subjects can be observed in network metrics. The method proposed herein provides a new perspective for investigating individual brain connectivity; it would enable neuroscientists to further understand the functions of the human brain.


The frequency and influence of dementia risk factors in prodromal Alzheimer's disease.

  • Isabelle Bos‎ et al.
  • Neurobiology of aging‎
  • 2017‎

We investigated whether dementia risk factors were associated with prodromal Alzheimer's disease (AD) according to the International Working Group-2 and National Institute of Aging-Alzheimer's Association criteria, and with cognitive decline. A total of 1394 subjects with mild cognitive impairment from 14 different studies were classified according to these research criteria, based on cognitive performance and biomarkers. We compared the frequency of 10 risk factors between the subgroups, and used Cox-regression to examine the effect of risk factors on cognitive decline. Depression, obesity, and hypercholesterolemia occurred more often in individuals with low-AD-likelihood, compared with those with a high-AD-likelihood. Only alcohol use increased the risk of cognitive decline, regardless of AD pathology. These results suggest that traditional risk factors for AD are not associated with prodromal AD or with progression to dementia, among subjects with mild cognitive impairment. Future studies should validate these findings and determine whether risk factors might be of influence at an earlier stage (i.e., preclinical) of AD.


Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer's disease in veterans, using the Alzheimer's Disease Neuroimaging Initiative.

  • Michael W Weiner‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2014‎

Both traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are common problems resulting from military service, and both have been associated with increased risk of cognitive decline and dementia resulting from Alzheimer's disease (AD) or other causes. This study aims to use imaging techniques and biomarker analysis to determine whether traumatic brain injury (TBI) and/or PTSD resulting from combat or other traumas increase the risk for AD and decrease cognitive reserve in Veteran subjects, after accounting for age. Using military and Department of Veterans Affairs records, 65 Vietnam War veterans with a history of moderate or severe TBI with or without PTSD, 65 with ongoing PTSD without TBI, and 65 control subjects are being enrolled in this study at 19 sites. The study aims to select subject groups that are comparable in age, gender, ethnicity, and education. Subjects with mild cognitive impairment (MCI) or dementia are being excluded. However, a new study just beginning, and similar in size, will study subjects with TBI, subjects with PTSD, and control subjects with MCI. Baseline measurements of cognition, function, blood, and cerebrospinal fluid biomarkers; magnetic resonance images (structural, diffusion tensor, and resting state blood-level oxygen dependent (BOLD) functional magnetic resonance imaging); and amyloid positron emission tomographic (PET) images with florbetapir are being obtained. One-year follow-up measurements will be collected for most of the baseline procedures, with the exception of the lumbar puncture, the PET imaging, and apolipoprotein E genotyping. To date, 19 subjects with TBI only, 46 with PTSD only, and 15 with TBI and PTSD have been recruited and referred to 13 clinics to undergo the study protocol. It is expected that cohorts will be fully recruited by October 2014. This study is a first step toward the design and statistical powering of an AD prevention trial using at-risk veterans as subjects, and provides the basis for a larger, more comprehensive study of dementia risk factors in veterans.


Gray matter structural covariance networks changes along the Alzheimer's disease continuum.

  • Kaicheng Li‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Alzheimer's disease (AD) has a long neuropathological accumulation phase before the onset of dementia. Such AD neuropathological deposition between neurons impairs the synaptic communication, resulting in networks disorganization. Our study aimed to explore the evolution patterns of gray matter structural covariance networks (SCNs) along AD continuum. Based on the AT(N) (i.e., Amyloid/Tau/Neurodegeneration) pathological classification system, we classified subjects into four groups using cerebrospinal fluid amyloid-beta1-42 (A) and phosphorylated tau protein181 (T). We identified 101 subjects with normal AD biomarkers (A-T-), 40 subjects with Alzheimer's pathologic change (A + T-), 101 subjects with biological AD (A + T+) and 91 AD with dementia (demented subjects with A + T+). We used four regions of interest to anchor default mode network (DMN, medial temporal subsystem and midline core subsystem), salience network (SN) and executive control network (ECN). Finally, we used a multi-regression model-based linear-interaction analysis to assess the SCN changes. Along the disease progression, DMN and SN showed increased structural association at the early stage while decreased structural association at the late stage. Moreover, ECN showed progressively increased structural association as AD neuropathological profiles progress. In conclusion, this study found the dynamic trajectory of SCNs changes along the AD continuum and support the network disconnection hypothesis underlying AD neuropathological progression. Further, SCN may potentially serve as an effective AD biomarker.


Prescribing cholinesterase inhibitors in mild cognitive impairment-Observations from the Alzheimer's Disease Neuroimaging Initiative.

  • Eddie Stage‎ et al.
  • Alzheimer's & dementia (New York, N. Y.)‎
  • 2021‎

Analyses of off-label use of acetylcholinesterase inhibitors (AChEIs) in mild cognitive impairment (MCI) has produced mixed results. Post hoc analyses of observational cohorts, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), have reported deleterious effects in AChEI-treated subjects (AChEI+). Here, we used neuroimaging biomarkers to determine whether AChEI+ subjects had a greater rate of neurodegeneration than untreated (AChEI-) subjects while accounting for baseline differences.


Your algorithm might think the hippocampus grows in Alzheimer's disease: Caveats of longitudinal automated hippocampal volumetry.

  • Tejas Sankar‎ et al.
  • Human brain mapping‎
  • 2017‎

Hippocampal atrophy rate-measured using automated techniques applied to structural MRI scans-is considered a sensitive marker of disease progression in Alzheimer's disease, frequently used as an outcome measure in clinical trials. Using publicly accessible data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we examined 1-year hippocampal atrophy rates generated by each of five automated or semiautomated hippocampal segmentation algorithms in patients with Alzheimer's disease, subjects with mild cognitive impairment, or elderly controls. We analyzed MRI data from 398 and 62 subjects available at baseline and at 1 year at MRI field strengths of 1.5 T and 3 T, respectively. We observed a high rate of hippocampal segmentation failures across all algorithms and diagnostic categories, with only 50.8% of subjects at 1.5 T and 58.1% of subjects at 3 T passing stringent segmentation quality control. We also found that all algorithms identified several subjects (between 2.94% and 48.68%) across all diagnostic categories showing increases in hippocampal volume over 1 year. For any given algorithm, hippocampal "growth" could not entirely be explained by excluding patients with flawed hippocampal segmentations, scan-rescan variability, or MRI field strength. Furthermore, different algorithms did not uniformly identify the same subjects as hippocampal "growers," and showed very poor concordance in estimates of magnitude of hippocampal volume change over time (intraclass correlation coefficient 0.319 at 1.5 T and 0.149 at 3 T). This precluded a meaningful analysis of whether hippocampal "growth" represents a true biological phenomenon. Taken together, our findings suggest that longitudinal hippocampal volume change should be interpreted with considerable caution as a biomarker. Hum Brain Mapp 38:2875-2896, 2017. © 2017 Wiley Periodicals, Inc.


Amyloidosis and neurodegeneration result in distinct structural connectivity patterns in mild cognitive impairment.

  • Thomas Jacquemont‎ et al.
  • Neurobiology of aging‎
  • 2017‎

Alzheimer's disease (AD) is increasingly considered as a disconnection syndrome. Previous studies of the structural connectome in early AD stages have focused on mild cognitive impaired subjects (MCI), considering them as a homogeneous group. We studied 168 subjects from the Alzheimer's Disease Neuroimaging Initiative database (116 MCI and 52 cognitively normal subjects). Biomarker-based stratification using amyloid biomarkers (AV45 PET) and neurodegeneration biomarkers (MRI and FDG PET) led to 4 subgroups based on amyloid positivity (A+/-) and neurodegeneration positivity (N+/-): A-N-, A+N-, A-N+, and A+N+. Using diffusion MRI, we showed that both MCI A-N+ and MCI A+N+ subjects displayed an alteration of the white matter in the fornix and a significant bihemispheric network of decreased connections. These network alterations in MCI A+N+ are stronger and more focal than those of MCI A-N+. Only MCI A+N+ subjects exhibited specific changes in hippocampal connectivity and an AD-like alteration pattern. Our results indicate that the connectome disintegration pattern of MCI subgroups differ with respect to brain amyloid and neurodegeneration. Each of these 2 AD biomarkers induces a connectome alteration that is maximal when they coexist.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: