2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes.

  • Dita Gratzinger‎ et al.
  • The American journal of pathology‎
  • 2007‎

Angiogenesis is known to play a major role in neoplasia, including hematolymphoid neoplasia. We assessed the relationships among angiogenesis and expression of vascular endothelial growth factor and its receptors in the context of clinically and biologically relevant subtypes of diffuse large B-cell lymphoma using immunohistochemical evaluation of tissue microarrays. We found that diffuse large B-cell lymphoma specimens showing higher local vascular endothelial growth factor expression showed correspondingly higher microvessel density, implying that lymphoma cells induce local tumor angiogenesis. In addition, local vascular endothelial growth factor expression was higher in those specimens showing higher expression of the receptors of the growth factor, suggesting an autocrine growth-promoting feedback loop. The germinal center-like and nongerminal center-like subtypes of diffuse large B-cell lymphoma were biologically and prognostically distinct. Interestingly, only in the more clinically aggressive nongerminal center-like subtype were microvessel densities significantly higher in specimens showing higher vascular endothelial growth factor expression; the same was true for the finding of higher vascular endothelial growth factor receptor-1 expression in conjunction with higher vascular endothelial growth factor expression. These differences may have important implications for the responsiveness of the two diffuse large B-cell lymphoma subtypes to anti-vascular endothelial growth factor and anti-angiogenic therapies.


Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy.

  • Steven Pennock‎ et al.
  • The American journal of pathology‎
  • 2014‎

Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration-approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti-VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated.


Activation of Dopamine D1 Receptors in Dermal Fibroblasts Restores Vascular Endothelial Growth Factor-A Production by These Cells and Subsequent Angiogenesis in Diabetic Cutaneous Wound Tissues.

  • Debanjan Chakroborty‎ et al.
  • The American journal of pathology‎
  • 2016‎

In wound beds, fibroblasts are rich sources of vascular endothelial growth factor A, a cytokine necessary for promoting angiogenesis and thereby the healing of wound tissues. However, in diabetes mellitus, these cells are functionally impaired and produce reduced amounts of vascular endothelial growth factor A, resulting in deficient angiogenesis and delayed wound healing. We here for the first time demonstrate that stimulation of D1 dopamine receptors present in dermal fibroblasts restores vascular endothelial growth factor A production by these cells, resulting in adequate angiogenesis and subsequent healing of cutaneous wounds in both type 1 and type 2 diabetic mice. This action of D1 dopamine receptors was mediated through the protein kinase A pathway. As delayed wound healing or chronic wounds are one of the major health problems in diabetic patients, D1 dopamine receptor agonists, which are already in clinical use for the treatment of other disorders, may be of translational value in the treatment of chronic, nonhealing diabetic wounds.


Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo.

  • Stephan Seeliger‎ et al.
  • The American journal of pathology‎
  • 2010‎

Pituitary adenylate cyclase-activating peptide (PACAP) is an important neuropeptide and immunomodulator in various tissues. Although this peptide and its receptors (ie, VPAC1R, VPAC2R, and PAC1R) are expressed in human skin, their biological roles are unknown. Therefore, we tested whether PACAP regulates vascular responses in human skin in vivo. When injected intravenously, PACAP induced a significant, concentration-dependent vascular response (ie, flush, erythema, edema) and mediated a significant and concentration-dependent increase in intrarectal body temperature that peaked at 2.7°C. Topical application of PACAP induced marked concentration-dependent edema. Immunohistochemistry revealed a close association of PACAP-immunoreactive nerve fibers with mast cells and dermal blood vessels. VPAC1R was expressed by dermal endothelial cells, CD4+ and CD8+ T cells, mast cells, and keratinocytes, whereas VPAC2R was expressed only in keratinocytes. VPAC1R protein and mRNA were also detected in human dermal microvascular endothelial cells. The PACAP-induced change in cAMP production in these cells demonstrated VPAC1R to be functional. PACAP treatment of organ-cultured human skin strongly increased the number of CD31+ vessel cross-sections. Taken together, these results suggest that PACAP directly induces vascular responses that may be associated with neurogenic inflammation, indicating for the first time that PACAP may be a crucial vascular regulator in human skin in vivo. Antagonists to PACAP function may be beneficial for the treatment of inflammatory skin diseases with a neurogenic component.


Tumor necrosis factor receptor expression and signaling in renal cell carcinoma.

  • Rafia S Al-Lamki‎ et al.
  • The American journal of pathology‎
  • 2010‎

Clear cell renal cell carcinoma (ccRCC), a tubular epithelial cell (TEC) malignancy, frequently secretes tumor necrosis factor (TNF). TNF signals via two distinct receptors (TNFRs). TNFR1, expressed in normal kidney primarily on endothelial cells, activates apoptotic signaling kinase 1 and nuclear factor-kappaB (NF-kappaB) and induces cell death, whereas TNFR2, inducibly expressed on endothelial cells and on TECs by injury, activates endothelial/epithelial tyrosine kinase (Etk), which trans-activates vascular endothelial growth factor receptor 2 (VEGFR2) to promote cell proliferation. We investigated TNFR expression in clinical samples and function in short-term organ cultures of ccRCC tissue treated with wild-type TNF or specific muteins selective for TNFR1 (R1-TNF) or TNFR2 (R2-TNF). There is a significant increase in TNFR2 but not TNFR1 expression on malignant TECs that correlates with increasing malignant grade. In ccRCC organ cultures, R1-TNF increases TNFR1, activates apoptotic signaling kinase and NF-kappaB, and promotes apoptosis in malignant TECs. R2-TNF increases TNFR2, activates NF-kappaB, Etk, and VEGFR2 and increases entry into the cell cycle. Wild-type TNF induces both sets of responses. R2-TNF actions are blocked by pretreatment with a VEGFR2 kinase inhibitor. We conclude that TNF, acting through TNFR2, is an autocrine growth factor for ccRCC acting via Etk-VEGFR2 cross-talk, insights that may provide a more effective therapeutic approach to this disease.


Differential functions of tumor necrosis factor receptor 1 and 2 signaling in ischemia-mediated arteriogenesis and angiogenesis.

  • Dianhong Luo‎ et al.
  • The American journal of pathology‎
  • 2006‎

We have previously shown that tumor necrosis factor (TNF) acts via its two receptors TNFR1 and TNFR2 to elicit distinct signaling pathways in vascular endothelial cells (ECs). Here we used a femoral artery ligation model to demonstrate that TNFR1-knockout (KO) mice had enhanced, whereas TNFR2-KO had reduced, capacity in clinical recovery, limb perfusion, and ischemic reserve capacity compared with the wild-type mice. Consistently, ischemia-initiated collateral growth (arteriogenesis) in the upper limb and capillary formation and vessel maturation (angiogenesis) in the lower limb were enhanced in TNFR1-KO but were reduced in TNFR2-KO mice. Furthermore, our results suggest that vascular proliferation, but not infiltration of macrophages and lymphocytes, accounted for the phenotypic differences between the TNFR1-KO and TNFR2-KO mice. In wild-type animals TNFR2 protein in vascular endothelium was highly up-regulated in response to ischemia, leading to increased TNFR2-specific signaling as determined by the formation TNFR2-TRAF2 complex and activation of TNFR2-specific kinase Bmx/Etk. In isolated murine ECs, activation of TNFR2 induced nuclear factor-kappaB-dependent reporter gene expression, EC survival, and migration. In contrast, activation of TNFR1 caused inhibition of EC migration and EC apoptosis. These data demonstrate that TNFR1 and TNFR2 play differential roles in ischemia-mediated arteriogenesis and angiogenesis, partly because of their opposite effects on EC survival and migration.


Soluble human IL-1 receptor type 2 inhibits ectopic endometrial tissue implantation and growth: identification of a novel potential target for endometriosis treatment.

  • Khaled Khoufache‎ et al.
  • The American journal of pathology‎
  • 2012‎

Endometriosis is often associated with a chronic pelvic immuno-inflammatory process, which is closely related to disease pathogenesis and major symptoms. Our studies led to the detection of a marked imbalance between IL-1 and its natural inhibitor IL-1 receptor type 2 (IL1R2) in women with endometriosis. This points to a deficiency in the local control of IL-1 that, in view of the cytokine's elevated levels and potent proinflammatory, angiogenic, and growth-promoting effects, may contribute to endometriosis development. Using an in vivo model in which human endometrial tissue was inoculated into nude mice and left to establish before any further treatment, our data showed that sIL1R2 interferes with the capability of endometrial tissue to invade, grow, disseminate, and stimulate angiogenesis into the host tissue. sIL1R2 significantly down-regulated the expression of major cell adhesion receptors (αv and β3 integrins), matrix metalloproteinases (MMP-2 and -9), and vascular endothelial cell growth factor. Interestingly, treatment with sILR2 (5 μg/kg) led to a concomitant upregulation of matrix metalloproteinases natural inhibitors (TIMP1 and TIMP2) and down-regulation of BclII, a potent anti-apoptotic protein. This creates an imbalance between pro- and anti-proteolytic and apoptotic factors and may further contribute to IL1R2 growth-inhibitory effects. This study provides evidence that sIL1R2 alters ectopic endometrial tissue growth, remodeling, and survival in vivo and may represent an interesting potential therapeutic tool.


Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency.

  • Patrick Mucka‎ et al.
  • The American journal of pathology‎
  • 2016‎

The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.


Iodine deficiency induces a thyroid stimulating hormone-independent early phase of microvascular reshaping in the thyroid.

  • Anne-Catherine Gérard‎ et al.
  • The American journal of pathology‎
  • 2008‎

Expansion of the thyroid microvasculature is the earliest event during goiter formation, always occurring before thyrocyte proliferation; however, the precise mechanisms governing this physiological angiogenesis are not well understood. Using reverse transcriptase-polymerase chain reaction and immunohistochemistry to measure gene expression and laser Doppler to measure blood flow in an animal model of goitrogenesis, we show that thyroid angiogenesis occurred into two successive phases. The first phase lasted a week and involved vascular activation; this process was thyroid-stimulating hormone (TSH)-independent and was directly triggered by expression of vascular endothelial growth factor (VEGF) by thyrocytes as soon as the intracellular iodine content decreased. This early reaction was followed by an increase in thyroid blood flow and endothelial cell proliferation, both of which were mediated by VEGF and inhibited by VEGF-blocking antibodies. The second, angiogenic, phase was TSH-dependent and was activated as TSH levels increased. This phase involved substantial up-regulation of the major proangiogenic factors VEGF-A, fibroblast growth factor-2, angiopoietin 1, and NG2 as well as their receptors Flk-1/VEGFR2, Flt-1/VEGFR1, and Tie-2. In conclusion, goiter-associated angiogenesis promotes thyroid adaptation to iodine deficiency. Specifically, as soon as the iodine supply is limited, thyrocytes produce proangiogenic signals that elicit early TSH-independent microvascular activation; if iodine deficiency persists, TSH plasma levels increase, triggering the second angiogenic phase that supports thyrocyte proliferation.


miR-24 Inhibition Increases Menin Expression and Decreases Cholangiocarcinoma Proliferation.

  • Laurent Ehrlich‎ et al.
  • The American journal of pathology‎
  • 2017‎

Menin (MEN1) is a tumor-suppressor protein in neuroendocrine tissue. Therefore, we tested the novel hypothesis that menin regulates cholangiocarcinoma proliferation. Menin and miR-24 expression levels were measured in the following intrahepatic and extrahepatic cholangiocarcinoma (CCA) cell lines, Mz-ChA-1, TFK-1, SG231, CCLP, HuCCT-1, and HuH-28, as well as the nonmalignant human intrahepatic biliary line, H69. miR-24 miRNA and menin protein levels were manipulated in vitro in Mz-ChA-1 cell lines. Markers of proliferation and angiogenesis (Ki-67, vascular endothelial growth factors A/C, vascular endothelial growth factor receptors 2/3, angiopoietin 1/2, and angiopoietin receptors 1/2) were evaluated. Mz-ChA-1 cells were injected into the flanks of nude mice and treated with miR-24 inhibitor or inhibitor scramble. Menin expression was decreased in advanced CCA specimens, whereas miR-24 expression was increased in CCA. Menin overexpression decreased proliferation, angiogenesis, migration, and invasion. Inhibition of miR-24 increased menin protein expression while decreasing proliferation, angiogenesis, migration, and invasion. miR-24 was shown to negatively regulate menin expression by luciferase assay. Tumor burden and expression of proliferative and angiogenic markers was decreased in the miR-24 inhibited tumor group compared to controls. Interestingly, treated tumors were more fibrotic than the control group. miR-24-dependent expression of menin may be important in the regulation of nonmalignant and CCA proliferation and may be an additional therapeutic tool for managing CCA progression.


Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy.

  • Zhongxiao Wang‎ et al.
  • The American journal of pathology‎
  • 2016‎

Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases.


Selective stimulation of VEGFR2 accelerates progressive renal disease.

  • Waichi Sato‎ et al.
  • The American journal of pathology‎
  • 2011‎

Vascular endothelial growth factor A (VEGF-A) can play both beneficial and deleterious roles in renal diseases, where its specific function might be determined by nitric oxide bioavailability. The complexity of VEGF-A in renal disease could in part be accounted for by the distinct roles of its two receptors; VEGFR1 is involved in the inflammatory responses, whereas VEGFR2 predominantly mediates angiogenesis. Because nondiabetic chronic renal disease is associated with capillary loss, we hypothesized that selective stimulation of VEGFR2 could be beneficial in this setting. However, VEGFR2 activation may be deleterious in the presence of nitric oxide deficiency. We systematically overexpressed a mutant form of VEGF-A binding only VEGFR2 (Flk-sel) using an adeno-associated virus-1 vector in wild-type and eNOS knockout mice and then induced renal injury by uninephrectomy. Flk-sel treatment increased angiogenesis and lowered blood pressure in both mouse types. Flk-sel overexpression caused mesangial injury with increased proliferation associated with elevated expression of PDGF, PDGF-β receptor, and VEGFR2; this effect was greater in eNOS knockout than in wild-type mice. Flk-sel also induced tubulointerstitial injury, with some tubular epithelial cells expressing α-smooth muscle actin, indicating a phenotypic evolution toward myofibroblasts. In conclusion, prestimulation of VEGFR2 can potentiate subsequent renal injury in mice, an effect enhanced in the setting of nitric oxide deficiency.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: