Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 833 papers

Vascular endothelial growth factor can signal through platelet-derived growth factor receptors.

  • Stephen G Ball‎ et al.
  • The Journal of cell biology‎
  • 2007‎

Vascular endothelial growth factor (VEGF-A) is a crucial stimulator of vascular cell migration and proliferation. Using bone marrow-derived human adult mesenchymal stem cells (MSCs) that did not express VEGF receptors, we provide evidence that VEGF-A can stimulate platelet-derived growth factor receptors (PDGFRs), thereby regulating MSC migration and proliferation. VEGF-A binds to both PDGFRalpha and PDGFRbeta and induces tyrosine phosphorylation that, when inhibited, results in attenuation of VEGF-A-induced MSC migration and proliferation. This mechanism was also shown to mediate human dermal fibroblast (HDF) migration. VEGF-A/PDGFR signaling has the potential to regulate vascular cell recruitment and proliferation during tissue regeneration and disease.


Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance.

  • Sinem Karaman‎ et al.
  • The Journal of experimental medicine‎
  • 2022‎

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth. Here we show that vascular regression induced by VEGFR2 deletion in postnatal and adult mice is aggravated by additional deletion of VEGFR1 or VEGFR3 in the intestine, kidney, and pancreas, but not in the liver or kidney glomeruli. In the adult mice, hepatic and intestinal vessels regressed within a few days after gene deletion, whereas vessels in skin and retina remained stable for at least four weeks. Our results show changes in endothelial transcriptomes and organ-specific vessel maintenance mechanisms that are dependent on VEGFR signaling pathways and reveal previously unknown functions of VEGFR1 and VEGFR3 in endothelial cells.


Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors.

  • S Asthana‎ et al.
  • Indian journal of pharmaceutical sciences‎
  • 2015‎

Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK - 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot(+) and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5'-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5'-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders.


Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors.

  • Simone Zanella‎ et al.
  • Frontiers in chemistry‎
  • 2019‎

Tumor angiogenesis, essential for cancer development, is regulated mainly by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which are overexpressed in cancer cells. Therefore, the VEGF/VEGFR interaction represents a promising pharmaceutical target to fight cancer progression. The VEGF surface interacting with VEGFRs comprises a short α-helix. In this work, helical oligopeptides mimicking the VEGF-C helix were rationally designed based on structural analyses and computational studies. The helical conformation was stabilized by optimizing intramolecular interactions and by introducing helix-inducing Cα,α-disubstituted amino acids. The conformational features of the synthetic peptides were characterized by circular dichroism and nuclear magnetic resonance, and their receptor binding properties and antiangiogenic activity were determined. The best hits exhibited antiangiogenic activity in vitro at nanomolar concentrations and were resistant to proteolytic degradation.


Microvascularization and Expression of Fibroblast Growth Factor and Vascular Endothelial Growth Factor and Their Receptors in the Mare Oviduct.

  • Pedro Pinto-Bravo‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2021‎

The oviduct presents the ideal conditions for fertilization and early embryonic development. In this study, (i) vascularization pattern; (ii) microvascular density; (iii) transcripts of angiogenic factors (FGF1, FGF2, VEGF) and their receptors-FGFR1, FGFR2, KDR, respectively, and (iv) the relative protein abundance of those receptors were assessed in cyclic mares' oviducts. The oviductal artery, arterioles and their ramifications, viewed by means of vascular injection-corrosion, differed in the infundibulum, ampulla and isthmus. The isthmus, immunostained with CD31, presented the largest vascular area and the highest number of vascular structures in the follicular phase. Transcripts (qPCR) and relative protein abundance (Western blot) of angiogenic factors fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all oviduct portions throughout the estrous cycle. Upregulation of the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus and of FGF2 and KDR in the isthmus were noted. Furthermore, in the isthmus, the relative protein abundance of FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its three portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns.


Vascular endothelial growth factor induces endothelial fenestrations in vitro.

  • S Esser‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis, angiogenesis, and vascular permeability. In contrast to its transient expression during the formation of new blood vessels, VEGF and its receptors are continuously and highly expressed in some adult tissues, such as the kidney glomerulus and choroid plexus. This suggests that VEGF produced by the epithelial cells of these tissues might be involved in the induction or maintenance of fenestrations in adjacent endothelial cells expressing the VEGF receptors. Here we describe a defined in vitro culture system where fenestrae formation was induced in adrenal cortex capillary endothelial cells by VEGF, but not by fibroblast growth factor. A strong induction of endothelial fenestrations was observed in cocultures of endothelial cells with choroid plexus epithelial cells, or mammary epithelial cells stably transfected with cDNAs for VEGF 120 or 164, but not with untransfected cells. These results demonstrate that, in these cocultures, VEGF is sufficient to induce fenestrations in vitro. Identical results were achieved when the epithelial cells were replaced by an epithelial-derived basal lamina-type extracellular matrix, but not with collagen alone. In this defined system, VEGF-mediated induction of fenestrae was always accompanied by an increase in the number of fused diaphragmed caveolae-like vesicles. Caveolae, but not fenestrae, were labeled with a caveolin-1-specific antibody both in vivo and in vitro. VEGF stimulation led to VEGF receptor tyrosine phosphorylation, but no change in the distribution, phosphorylation, or protein level of caveolin-1 was observed. We conclude that VEGF in the presence of a basal lamina-type extracellular matrix specifically induces fenestrations in endothelial cells. This defined in vitro system will allow further study of the signaling mechanisms involved in fenestrae formation, modification of caveolae, and vascular permeability.


Targeting Vascular Endothelial Growth Factor Receptors as a Therapeutic Strategy for Osteoarthritis and Associated Pain.

  • Kaige Ma‎ et al.
  • International journal of biological sciences‎
  • 2023‎

Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration.


Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development.

  • You Sun Kim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

The angiogenic aspect of neurotrophins and their receptors rather than the neuroscientific aspect has been focused. However, their role in retinal vascular development is underdiscovered. The purpose of this study is to understand the role of neurotrophin receptors in retinal vascular development and the mechanisms of their action. To identify the expression of tropomyosin receptor kinase receptor (Trk) in developing retina, tissues of 4, 8, 12, 16 and 26 day-old mice were prepared for experiments. Immunohistochemistry and immunofluorescence double staining against glial fibrillary acidic protein and type IV collagen were performed. TrkA was expressed mainly along the vessel structure in inner part of retina, especially in retinal astrocyte. In cultured primary astrocyte, recombinant nerve growth factor (NGF) was used to activate TrkA. NGF induced the phosphorylation of TrkA, and it also enhanced the level of activated Akt and vascular endothelial growth factor (VEGF) mRNA. Inhibition of phosphoinositide 3-kinase (PI3K) reversed the NGF-induced activation of these two molecules. This study demonstrated that TrkA activation on NGF leads to VEGF elevation by PI3K-Akt pathway and therefore suggested that TrkA could be a stimulator of retinal vascular development.


Growth inhibition of AML cells with specific chromosome abnormalities by monoclonal antibodies to receptors for vascular endothelial growth factor.

  • Norikazu Imai‎ et al.
  • Leukemia research‎
  • 2009‎

By using neutralizing monoclonal antibodies to vascular endothelial growth factor receptor type 1 (VEGFR1) and VEGFR2, we have shown that acute myelogenous leukemia (AML) cells with specific chromosome abnormalities are dependent on VEGF/VEGFR system. AML with t(8;21) is the most dependent subtype on VEGF with both VEGFR1 and VEGFR2. t(15;17)AML cells depend on VEGF with VEGFR1. AML cells with 11q23 abnormalities showed variable dependence on VEGF. The growth of t(11;19)AML cells are most extensively inhibited by anti-VEGFR1 antibody. Then, the growth of Kasumi-1, a t(8;21) cell line was suppressed by either anti-VEGFR1 antibody (p=0.0022) or anti-VEGFR2 antibody (p=0.0029) in a dose-dependent manner. The growth of NB4, a t(15;17) cell line was more potently suppressed by anti-VEGFR1 antibody (p=0.0111) than by anti-VEGFR2 antibody (p=0.0477). These results are quite concordant with the results of clinical samples with t(8;21) or t(15;17). In addition, anti-VEGFR2 monoclonal antibody significantly potentiated the growth inhibitory effect of idarubicin for Kasumi-1. As for downstream signals, we have shown that VEGFR2 transduce growth and survival signals through phosphorylation of Akt and MEK in leukemia cells (Kasumi-1). However, VEGFR1 transduce growth and survival signals through pathways other than MEK and Akt (NB4), although Akt phosphorylation may account for some of the VEGFR1 signals (Kasumi-1). Finally, our data suggested that autocrine pathway of VEGF and VEGFRs observed in AML cells with specific chromosomal translocations have contributed to leukemogenesis as activated signaling of receptor tyrosine kinase.


VEGF receptors on PC12 cells mediate transient activation of ERK1/2 and Akt: comparison of nerve growth factor and vascular endothelial growth factor.

  • Ingrid Berger‎ et al.
  • Journal of negative results in biomedicine‎
  • 2006‎

Vascular endothelial growth factor (VEGF) and endostatin are angiogenic and anti-angiogenic molecules, respectively, that have been implicated in neurogenesis and neuronal survival. Using alkaline phosphatase fusion proteins, we show that the PC12 neuronal cell line contains cell membrane receptors for VEGF but not for endostatin and the collagen XV endostatin homologue. Immunocytochemistry confirmed that proliferating and differentiated PC12 cells express VEGF receptors 1, 2 and neuropilin-1. While no functional effects of VEGF on PC12 cell proliferation and differentiation could be observed, a slight VEGF-induced reduction of caspase-3 activity in differentiated apoptotic PC12 cells was paralleled by transient activation of ERK1/2 and Akt. In direct comparison, nerve growth factor proved to be a strikingly more potent neuroprotective agent than VEGF.


Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice.

  • Kyung-Ok Cho‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2019‎

Vascular endothelial growth factor (VEGF)-C and its receptor, vascular endothelial growth factor receptor (VEGFR)-3, are responsible for lymphangiogenesis in both embryos and adults. In epilepsy, the expression of VEGF-C and VEGFR-3 was significantly upregulated in the human brains affected with temporal lobe epilepsy. Moreover, pharmacologic inhibition of VEGF receptors after acute seizures could suppress the generation of spontaneous recurrent seizures, suggesting a critical role of VEGF-related signaling in epilepsy. Therefore, in the present study, the spatiotemporal expression of VEGF-C and VEGFR-3 against pilocarpine-induced status epilepticus (SE) was investigated in C57BL/6N mice using immunohistochemistry. At 1 day after SE, hippocampal astrocytes and microglia were activated. Pyramidal neuronal death was observed at 4 days after SE. In the subpyramidal zone, VEGF-C expression gradually increased and peaked at 7 days after SE, while VEGFR-3 was significantly upregulated at 4 days after SE and began to decrease at 7 days after SE. Most VEGF-C/VEGFR-3-expressing cells were pyramidal neurons, but VEGF-C was also observed in some astrocytes in sham-manipulated animals. However, at 4 days and 7 days after SE, both VEGFR-3 and VEGF-C immunoreactivities were observed mainly in astrocytes and in some microglia of the stratum radiatum and lacunosum-moleculare of the hippocampus, respectively. These data indicate that VEGF-C and VEGFR-3 can be upregulated in hippocampal astrocytes and microglia after pilocarpine-induced SE, providing basic information about VEGF-C and VEGFR-3 expression patterns following acute seizures.


Thiol regulation of vascular endothelial growth factor-A and its receptors in human retinal pigment epithelial cells.

  • Parameswaran G Sreekumar‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

We investigated the secretion and expression of VEGF-A and its receptors in human retinal pigment epithelial cells (RPE) under conditions of oxidative stress induced by glutathione (GSH) depletion. RPE cells were treated with 500 microM DL-buthionine-(S,R)-sulfoximine (BSO) for varying times up to 24 h. Cellular GSH levels, GSH:GSSG ratios, VEGF-A mRNA and protein expression, as well as VEGF-A secretion, and VEGFR-1 and VEGFR-2 receptor expression were determined. Treatment with BSO caused a significant decrease in intracellular GSH and in GSH/GSSG ratios. Treatment with BSO increased VEGF-A mRNA linearly with time which was significant at 24h (p<0.01 vs untreated controls). An increase was also found for VEGF-A secretion with BSO treatment; incubation of RPE with GSH monoethyl ester (GSH-MEE) caused an 84% decrease in VEGF-A secretion. Further, thiol depletion by BSO caused a significant induction of VEGFR-1 and VEGFR-2. Thus, our studies show that cellular redox status plays an important role in VEGF regulation in RPE cells.


Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

  • Dorothee Heck‎ et al.
  • Hormones & cancer‎
  • 2015‎

Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.


Expressions of vascular endothelial growth factor receptors, Flk1 and Flt1, in rat skin mast cells during development.

  • Miki Koh‎ et al.
  • The Journal of veterinary medical science‎
  • 2020‎

Vascular endothelial growth factor-A (VEGF-A) is a principal regulator of hematopoiesis as well as angiogenesis. However, the functions of VEGF-A and its receptors (VEGFRs) in the differentiation of mast cells (MCs) in the skin remain unclear. The aim of this study was to determine the expression patterns of two VEGFRs (Flk1 and Flt1) in the skin MCs during development and maturation in rats. From the 17th days of embryonic development (E17) to 1 day after birth (Day 1), most of skin MCs were immature cells containing predominant alcian blue (AB)+ rather than safranin O (SO)+ granules (AB>SO MCs). AB>SO MC proportions gradually decreased, while mature ABSO MCs had significantly decreased, and AB


Curcumin upregulates transforming growth factor-β1, its receptors, and vascular endothelial growth factor expressions in an in vitro human gingival fibroblast wound healing model.

  • Auspreeya Rujirachotiwat‎ et al.
  • BMC oral health‎
  • 2021‎

Curcumin accelerates healing of oral wounds; however, the responsible mechanisms remain underexplored. Our hypothesis is curcumin regulates the expression of wound healing-related genes in human gingival fibroblasts (hGFs). This study investigated whether curcumin regulates transforming growth factor (TGF)-β1, type I TGF-β receptor (TGF-βRI), type II TGF-β receptor (TGF-βRII), and vascular endothelial growth factor (VEGF) expression in unwounded hGFs and an in vitro hGF wound healing model.


Blockade of vascular endothelial growth factor receptors by tivozanib has potential anti-tumour effects on human glioblastoma cells.

  • Majid Momeny‎ et al.
  • Scientific reports‎
  • 2017‎

Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.


Overexpression of vascular endothelial growth factor (VEGF) receptors on keratinocytes in psoriasis: regulated by calcium independent of VEGF.

  • Xiao-Yong Man‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2008‎

Psoriasis is a common chronic inflammatory disease of the skin characterized by epidermal hyperplasia and angiogenesis. Recently, vascular endothelial growth factor receptors (VEGFRs, including VEGFR-1, VEGFR-2 and VEGFR-3) were found to be expressed in normal human epidermis and associated with proliferation and migration of keratinocytes. The purpose of this study is to investigate the expression of VEGFRs on psoriatic keratinocytes and the roles of calcium and VEGF in regulating VEGFR expression. Skin samples from 17 patients with chronic plaque psoriasis and 11 normal controls were included. The expression of VEGFRs in psoriatic keratinocytes at mRNA and protein levels was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. Localization of the VEGFRs in skin lesions was determined by immuno-fluorescent method. Since keratinocyte proliferation and differentiation rely on calcium concentrations, and VEGF is overexpressed in psoriatic epidermis, we further investigated the roles of calcium and VEGF in regulating the expression of VEGFRs. Overexpression of VEGFR-1, VEGFR-2 and VEGFR-3 in psoriatic epidermis was demonstrated both at mRNA and protein levels in vitro. VEGFRs were strongly labeled in non-lesional, perilesional and lesional psoriatic keratinocytes in all viable epidermal stratums in vivo. Furthermore, both exogenous VEGF165 and calcium enhanced the expression of VEGFRs. Calcium also enhanced the expression of VEGF in non-lesional psoriatic keratinocytes, while targeted blockade of VEGF activity by bevacizumab could not inhibit calcium-induced up-regulation of protein levels of VEGFRs. We conclude from these results that VEGFRs are overexpressed in lesional psoriatic epidermal keratinocytes. Both calcium and VEGF regulate VEGFRs expression in psoriatic epidermis. More importantly, calcium is a potential regulator for VEGFR independent of VEGF.


Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes.

  • Dita Gratzinger‎ et al.
  • The American journal of pathology‎
  • 2007‎

Angiogenesis is known to play a major role in neoplasia, including hematolymphoid neoplasia. We assessed the relationships among angiogenesis and expression of vascular endothelial growth factor and its receptors in the context of clinically and biologically relevant subtypes of diffuse large B-cell lymphoma using immunohistochemical evaluation of tissue microarrays. We found that diffuse large B-cell lymphoma specimens showing higher local vascular endothelial growth factor expression showed correspondingly higher microvessel density, implying that lymphoma cells induce local tumor angiogenesis. In addition, local vascular endothelial growth factor expression was higher in those specimens showing higher expression of the receptors of the growth factor, suggesting an autocrine growth-promoting feedback loop. The germinal center-like and nongerminal center-like subtypes of diffuse large B-cell lymphoma were biologically and prognostically distinct. Interestingly, only in the more clinically aggressive nongerminal center-like subtype were microvessel densities significantly higher in specimens showing higher vascular endothelial growth factor expression; the same was true for the finding of higher vascular endothelial growth factor receptor-1 expression in conjunction with higher vascular endothelial growth factor expression. These differences may have important implications for the responsiveness of the two diffuse large B-cell lymphoma subtypes to anti-vascular endothelial growth factor and anti-angiogenic therapies.


Gene Expression of Vascular Endothelial Growth Factor A and its Receptors in Dental Pulp of Immature and Mature Teeth.

  • Jose Francisco Gomez-Sosa‎ et al.
  • European endodontic journal‎
  • 2021‎

Vascular endothelial growth factor A (VEGFA) and its receptors are essential proteins for the angiogenic activity of dental pulp. Angiogenesis fundamentally provides oxygen and nutrients to cells for root formation and defence mechanisms. The angiogenic potential of dental pulp should be understood and considered for the conservative and regenerative endodontics. The purpose of this research was to measure the VEGFA expression and its receptors such as vascular endothelial growth factor receptors 1, -2 (VEGFR1, VEGFR2) and Neuropilin 1 (NRP1) in human dental pulp from molars with immature and mature apexes.


Adenosine up-regulates vascular endothelial growth factor in human macrophages.

  • Isabelle Ernens‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

It is known from animal models that the cardioprotective nucleoside adenosine stimulates angiogenesis mainly through up-regulation of vascular endothelial growth factor (VEGF). Since macrophages infiltrate the heart after infarction and because adenosine receptors behave differently across species, we evaluated the effect of adenosine on VEGF in human macrophages. Adenosine dose-dependently up-regulated VEGF expression and secretion by macrophages from healthy volunteers. VEGF production was also increased by blockade of extracellular adenosine uptake with dipyridamole. This effect was exacerbated by the toll-like receptor-4 ligands heparan sulfate, hyaluronic acid and lipopolysaccharide, and was associated with an increase of hypoxia inducible factor-1alpha expression, the main transcriptional inducer of VEGF in hypoxic conditions. The agonist of the adenosine A2A receptor CGS21680 reproduced the increase of VEGF and the antagonist SCH58261 blunted it. In conclusion, these results provide evidence that activation of adenosine A2A receptor stimulates VEGF production in human macrophages. This study suggests that adenosine is a unique pro-angiogenic molecule that may be used to stimulate cardiac repair.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: