Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Platelet-derived growth factor (PDGF) cross-signaling via non-corresponding receptors indicates bypassed signaling in colorectal cancer.

  • Romana Moench‎ et al.
  • Oncotarget‎
  • 2022‎

Platelet-derived growth factor (PDGF) signaling, besides other growth factor-mediated signaling pathways like vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), seems to play a crucial role in tumor development and progression. We have recently provided evidence for upregulation of PDGF expression in UICC stage I-IV primary colorectal cancer (CRC) and demonstrated PDGF-mediated induction of PI3K/Akt/mTOR signaling in CRC cell lines. The present study sought to follow up on our previous findings and explore the alternative receptor cross-binding potential of PDGF in CRC. Our analysis of primary human colon tumor samples demonstrated upregulation of the PDGFRβ, VEGFR1, and VEGFR2 genes in UICC stage I-III tumors. Immunohistological analysis revealed co-expression of PDGF and its putative cross-binding partners, VEGFR2 and EGFR. We then analyzed several CRC cell lines for PDGFRα, PDGFRβ, VEGFR1, and VEGFR2 protein expression and found these receptors to be variably expressed amongst the investigated cell lines. Interestingly, whereas Caco-2 and SW480 cells showed expression of all analyzed receptors, HT29 cells expressed only VEGFR1 and VEGFR2. However, stimulation of HT29 cells with PDGF resulted in upregulation of VEGFR1 and VEGFR2 expression despite the absence of PDGFR expression and mimicked the effect of VEGF stimulation. Moreover, PDGF recovered HT29 cell proliferation under simultaneous treatment with a VEGFR or EGFR inhibitor. Our results provide some of the first evidence for PDGF cross-signaling through alternative receptors in colorectal cancer and support anti-PDGF therapy as a combination strategy alongside VEGF and EGF targeting even in tumors lacking PDGFR expression.


Platelet-derived growth factor-C promotes human melanoma aggressiveness through activation of neuropilin-1.

  • Federica Ruffini‎ et al.
  • Oncotarget‎
  • 2017‎

Despite recent progress in advanced melanoma therapy, identification of signalling pathways involved in melanoma switch from proliferative to invasive states is still crucial to uncover new therapeutic targets for improving the outcome of metastatic disease. Neuropilin-1 (NRP-1), a co-receptor for vascular endothelial growth factor-A (VEGF-A) tyrosine kinase receptors (VEGFRs), has been suggested to play a relevant role in melanoma progression. NRP-1 can be activated by VEGF-A also in the absence of VEGFRs, triggering specific signal transduction pathways (e.g. p130Cas phosphorylation). Since melanoma cells co-expressing high levels of NRP-1 and platelet derived growth factor-C (PDGF-C) show a highly invasive behaviour and PDGF-C shares homology with VEGF-A, in this study we have investigated whether PDGF-C directly interacts with NRP-1 and promotes melanoma aggressiveness. Results demonstrate that PDGF-C specifically binds in vitro to NRP-1. In melanoma cells expressing NRP-1 but lacking PDGFRα, PDGF-C stimulates extra-cellular matrix (ECM) invasion and induces p130Cas phosphorylation. Blockade of PDGF-C function by neutralizing antibodies or reduction of its secretion by specific siRNA inhibit ECM invasion and vasculogenic mimicry. Moreover, PDGF-C silencing significantly down-modulates the expression of Snail, a transcription factor involved in tumour invasiveness that is highly expressed in NRP-1 positive melanoma cells. In conclusion, our results demonstrate for the first time a direct activation of NRP-1 by PDGF-C and strongly suggest that autocrine and/or paracrine stimulation of NRP-1 by PDGF-C might contribute to the acquisition of a metastatic phenotype by melanoma cells.


Endothelial Rac1 is essential for hematogenous metastasis to the lung.

  • Hongyi Yao‎ et al.
  • Oncotarget‎
  • 2015‎

A variety of vasoactive stimuli induce endothelial permeability through Rac1, a membrane of Rho small GTPases. Here, we determine whether tumor-secreted vasoactive stimulant through Rac1 inducing permeability contributes to hematogenous metastasis. Activation of Rac1 was assayed in human umbilical vein endothelial cells (HUVEC), transendothelial passages were measured by Transwell chambers, and hematogenously metastatic mouse model was generated by intravenous injection with Lewis lung carcinoma cells (LLC). LLC secreted abundant vascular endothelial growth factor (VEGF) in the culture media and sera of mice bearing LLC xenografts or metastatic LLC, and VEGF activated Rac1 through VEGF receptors/PI3Kβ signaling cascade, resulting in hyperoxidative stress and consequent hyperpermeability in HUVEC. Moreover, in co-culture of LLC and HUVEC, significant increases in endothelial permeability and transendothelial migration of LLC were robustly attenuated by either anti-VEGF neutralizing antibody or Rac1 knockdown in HUVEC. Finally, in metastatic mouse model, deletion of one copy of Rac1 in endothelium not only significantly attenuated LLC-induced vascular permeability, but robustly reduced the metastasis of LLC to lungs. This study supports that tumor-secreted vasoactive stimuli activate Rac1 to induce permeability and consequent transendothelial migration of tumor cells, and that loss of Rac1 function in endothelium is an effective therapeutic intervention for hematogenous metastasis.


Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

  • Seraina Faes‎ et al.
  • Oncotarget‎
  • 2016‎

Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.


Stromal fibroblasts present in breast carcinomas promote tumor growth and angiogenesis through adrenomedullin secretion.

  • Zohra Benyahia‎ et al.
  • Oncotarget‎
  • 2017‎

Tumor- or cancer-associated fibroblasts (TAFs or CAFs) are active players in tumorigenesis and exhibit distinct angiogenic and tumorigenic properties. Adrenomedullin (AM), a multifunctional peptide plays an important role in angiogenesis and tumor growth through its receptors calcitonin receptor-like receptor/receptor activity modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). We show that AM and AM receptors mRNAs are highly expressed in CAFs prepared from invasive breast carcinoma when compared to normal fibroblasts. Immunostaining demonstrates the presence of immunoreactive AM and AM receptors in the CAFs (n = 9). The proliferation of CAFs is decreased by anti-AM antibody (αAM) and anti-AM receptors antibody (αAMR) treatment, suggesting that AM may function as a potent autocrine/paracrine growth factor. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing CAFs as demonstrated by reduced numbers of the vessel structures, suggesting that AM is one of the CAFs-derived factors responsible for endothelial cell-like and pericytes recruitment to built a neovascularization. We show that MCF-7 admixed with CAFs generated tumors of greater volume significantly different from the MCF-7 xenografts in nude mice due in part to the induced angiogenesis. αAMR and AM22-52 therapies significantly suppressed the growth of CAFs/MCF-7 tumors. Histological examination of tumors treated with AM22-52 and aAMR showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells, induced apoptosis and decrease of tumor cell proliferation. Our findings highlight the importance of CAFs-derived AM pathway in growth of breast carcinoma and in neovascularization by supplying and amplifying signals that are essential for pathologic angiogenesis.


Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling.

  • Hsiu-Mei Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Foretinib, a multiple kinase inhibitor undergoing clinical trials, could suppress the activity of hepatocyte growth factor (HGF) receptor c-MET and vascular endothelial growth factor receptor-2 (VEGFR-2). In addition, Foretinib may inhibit two critical lymphangiogenic signaling receptors VEGFR-3 and TIE-2. However, the effect of Foretinib on lymphatic endothelial cells (LECs) in vitro and lymphangiogenesis in vivo is still unknown. We found Foretinib decreased basal- and HGF-induced c-MET activity at low concentrations. However, Foretinib only reduced the proliferation of pancreatic cancer cells at high concentration reflecting the intrinsic chemoresistance of pancreatic cancer cells. Foretinib inhibited VEGF-A, VEGF-C and Angiopoetin-2 (ANG-2)-stimulated tube formation and sprouting of LECs by reducing VEGFR-2, VEGFR-3 and TIE-2 activation and increased apoptosis of LECs. In xenograft animal study, Foretinib suppressed tumor growth by inhibiting proliferation, angiogenesis and lymphangiogenesis. Additionally, Foretinib inhibited angiogenesis and lymphangiogenesis more significantly and exhibited low detrimental effect in orthotopic animal study. Collectively, we suggested that Foretinib simultaneously inhibits cancer cells and LECs to reduce pancreatic tumor growth in vivo and demonstrated for the first time that Foretinib suppresses angiogenesis and lymphangiogenesis by blocking VEGFR-2/3 and TIE-2 signaling.


Efficacy and safety of targeting VEGFR drugs in treatment for advanced or metastatic gastric cancer: a systemic review and meta-analysis.

  • Duanrui Liu‎ et al.
  • Oncotarget‎
  • 2018‎

The value of targeting VEGFR (vascular endothelial growth factor receptor) drugs has demonstrated encouraging anti-cancer activity in advanced solid tumors within current clinical trials. This study aimed to serve as the first systemic review to assess their safety and efficacy according to biochemical characteristics of targeting VEGFR drugs in gastric cancer. We analyzed eight clinical trials on targeting VEGFR drugs in gastric cancer. Results showed that targeting VEGFR drugs significantly improved overall survival (OS) [Hazard Ratio (HR) 0.69, 95% confidence interval (CI) (0.55, 0.83), P < 0.001], progression free survival (PFS) [HR 0.50, 95% CI (0.34, 0.66), P < 0.001], disease control rate (DCR) [Odds Ratio (OR) 3.83, 95% CI (2.39, 6.15), P < 0.001] and significantly decreased the progressive disease rate(PDR)[OR 0.45, 95% CI (0.34, 0.59), P < 0.001], but not objective response rate (ORR) [OR 1.46, 95% CI (0.93, 2.29), P = 0.098]. Further subgroup revealed that VEGFR antibody (VEGFR-Ab) drugs were superior to VEGFR tyrosine kinase inhibitor (VEGFR-TKI) drugs in terms of the OS, PFS and PDR. To determine the toxic effect of targeting VEGFR drugs, the relative risk of adverse events (grade ≥ 3) of special interest(AESIs) were estimated. Most of these were predictable and manageable. Furthermore, less AESIs were observed in the VEGFR-Ab than the VEGFR-TKI drugs. In conclusion, VEGFR drugs were effective targeted therapy in advanced or metastatic gastric cancer, and its toxicity is within a controllable range. VEGFR-Ab drugs were more effective than VEGFR-TKI drugs in terms of the OS, PFS and PDR of gastric cancer patients with little toxicity.


Towards a multi protein and mRNA expression of biological predictive and distinguish model for post stroke depression.

  • Yingying Yue‎ et al.
  • Oncotarget‎
  • 2016‎

Previous studies suggest that neurotrophic factors participate in the development of stroke and depression. So we investigated the utility of these biomarkers as predictive and distinguish model for post stroke depression (PSD). 159 individuals including PSD, stroke without depression (Non-PSD), major depressive disorder (MDD) and normal control groups were recruited and examined the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptors (VEGFR2), placental growth factor (PIGF), insulin-like growth factor (IGF-1) and insulin-like growth factor receptors (IGF-1R). The chi-square test was used to evaluate categorical variable, while nonparametric test and one-way analysis of variance were applied to continuous variables of general characteristics, clinical and biological changes. In order to explore the predictive and distinguish role of these factors in PSD, discriminant analysis and receiver operating characteristic curve were calculated. The four groups had statistical differences in these neurotrophic factors (all P < 0.05) except VEGF concentration and IGF-1R mRNA (P = 0.776, P = 0.102 respectively). We identified these mRNA expression and protein analytes with general predictive performance for PSD and Non-PSD groups [area under the curve (AUC): 0.805, 95% CI, 0.704-0.907, P < 0.001]. Importantly, there is an excellent predictive performance (AUC: 0.984, 95% CI, 0.964-1.000, P < 0.001) to differentiate PSD patients from MDD patients. This was the first study to explore the changes of neurotrophic factors family in PSD patients, the results intriguingly demonstrated that the combination of protein and mRNA expression of biological factors could use as a predictive and discriminant model for PSD.


Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer.

  • Yi Lin‎ et al.
  • Oncotarget‎
  • 2017‎

Tumor cells produce vascular endothelial growth factor (VEGF) which interact with the membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth in an angiogenesis-independent fashion. Apatinib, a highly selective VEGFR2 inhibitor, is the only effective drug for patients with terminal gastric cancer (GC) who have no other chemotherapeutic options. However, its treatment efficacy is still controversy and the mechanism behind remains undetermined. In this study, we aimed to investigate the role of autocrine VEGF signaling in the growth of gastric cancer cells and the efficacy of Apatinib treatment.


Properties of mechano-transduction via simulated microgravity and its effects on intracellular trafficking of VEGFR's.

  • Andrew Puca‎ et al.
  • Oncotarget‎
  • 2012‎

This study emphasizes the dynamical properties of mechanical loading via simulated microgravity, its effect on acute myeloid leukemia proliferation and hematopoietic stem cell (HSPC) growth and its implications in the area of tissue regeneration. Data presented illustrates that mechanical transduction changes the expression of humoral factors by facilitating paracrine/autocrine signalling, therefore modulating intracellular trafficking of tyrosine kinase receptors. Understanding mechano-transduction in the context of cell and tissue morphogenesis is the major focus of this study. The effects of external physiological stresses, such as blood flow, on several cellular subtypes seem to produce very intricate cellular responses. It is well accepted that mechanical loading plays an intrinsic and extrinsic influence on cell survival. This study shows how microgravity effects hematopoietic stem cells, and human leukemic cell proliferation and expression of its receptors that control cell survival, such as the tyrosine kinase vascular endothelial growth factor receptor-1, receptor-2 and receptor-3.


Repulsive guidance molecule B inhibits metastasis and is associated with decreased mortality in non-small cell lung cancer.

  • Jin Li‎ et al.
  • Oncotarget‎
  • 2016‎

Repulsive guidance molecules (RGMs) are co-receptors of bone morphogenetic proteins (BMPs) and programmed death ligand 2 (PD-L2), and might be involved in lung and other cancers. We evaluated repulsive guidance molecule B (RGMB) expression in 165 non-small cell lung cancer (NSCLC) tumors and 22 normal lung tissue samples, and validated the results in an independent series of 131 samples. RGMB was downregulated in NSCLC (P ≤ 0.001), possibly through promoter hypermethylation. Reduced RGMB expression was observed in advanced-stage tumors (P = 0.017) and in tumors with vascular invasion (P < 0.01), and was significantly associated with poor overall survival (39 vs. 62 months, P < 0.001) and with disease-associated patient mortality (P = 0.015). RGMB knockdown promoted cell adhesion, invasion and migration, in both NSCLC cell lines and an in vivo mouse model, which enhanced metastatic potential. Conversely, RGMB overexpression and secretion suppressed cancer progression. The tumor-suppressing effect of RGMB was exerted through inhibition of the Smad1/5/8 pathway. Our results demonstrate that RGMB is an important inhibitor of NSCLC metastasis and that low RGMB expression is a novel predictor or a poor prognosis.


Two novel ligand-independent variants of the VEGFR-1 receptor are expressed in human testis and spermatozoa, one of them with the ability to activate SRC proto-oncogene tyrosine kinases.

  • Belen Alvarez-Palomo‎ et al.
  • Oncotarget‎
  • 2019‎

The vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility. By interrogating a human library of mature testis cDNA, we characterized two new truncated intracellular variants different from the ones previously described in cancer cells. The new isoforms were transcribed from alternative transcription start sites (aTSS) located respectively in intron-19 (i19VEGFR-1) and intron-28 (i28VEGFR-1) of the VEGFR-1 gene (GenBank accession numbers JF509744 and JF509745) and expressed in mature testis and spermatozoa. In this paper, we describe the characterization of these isoforms by RT-PCR, northern blot, and western blot, their preferential expression in human mature testis and spermatozoa, and the elements that punctuate their proximal promoters and suggest cues for their expression in spermatogenic cells. Mechanistically, we show that i19VEGFR-1 has a strong ability to phosphorylate and activate SRC proto-oncogene non-receptor tyrosine kinases and a significant bias toward a decrease in expression in patients considered infertile by WHO criteria.


Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.

  • Hong Peng‎ et al.
  • Oncotarget‎
  • 2016‎

Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.


Proteolytic cleavages in the extracellular domain of receptor tyrosine kinases by membrane-associated serine proteases.

  • Li-Mei Chen‎ et al.
  • Oncotarget‎
  • 2017‎

The epithelial extracellular membrane-associated serine proteases matriptase, hepsin, and prostasin are proteolytic modifying enzymes of the extracellular domain (ECD) of the epidermal growth factor receptor (EGFR). Matriptase also cleaves the ECD of the vascular endothelial growth factor receptor 2 (VEGFR2) and the angiopoietin receptor Tie2. In this study we tested the hypothesis that these serine proteases may cleave the ECD of additional receptor tyrosine kinases (RTKs). We co-expressed the proteases in an epithelial cell line with Her2, Her3, Her4, insulin receptor (INSR), insulin-like growth factor I receptor (IGF-1R), the platelet-derived growth factor receptors (PDGFRs) α and β, or nerve growth factor receptor A (TrkA). Western blot analysis was performed to detect the carboxyl-terminal fragments (CTFs) of the RTKs. Matriptase and hepsin were found to cleave the ECD of all RTKs tested, while TMPRSS6/matriptase-2 cleaves the ECD of Her4, INSR, and PDGFR α and β. Prostasin was able to cleave the ECD of Her3 and PDGFRα. Matriptase cleaves phosphorylated Her2 at Arg558 and Arg599 and the Arg599 cleavage produces a CTF not recognized by the monoclonal antibody trastuzumab/Herceptin. Her2 cleavages by matriptase can be inhibited by the hepatocyte growth factor activator inhibitor 1 (HAI-1) in the MDA-MB-231 human breast cancer cells. Matriptase silencing in the Her2, matriptase, and HAI-1 triple-positive SKBR3 human breast cancer cells enhanced Her2 protein down-regulation induced by a sustained exposure to phorbol 12-myristate 13-acetate (PMA), which down-regulated matriptase protein. The novel Her2 cleavage and expression regulation mechanisms mediated by matriptase may have potential impacts in Her2-targeting therapies.


Neuropilin-1 is a receptor for extracellular miRNA and AGO2/miRNA complexes and mediates the internalization of miRNAs that modulate cell function.

  • Gerald J Prud'homme‎ et al.
  • Oncotarget‎
  • 2016‎

Extracellular miRNAs are increasingly studied as markers for specific diseases. They are released in biological fluids in a remarkably stable form, and may play a role in intercellular communication. They are thought to be protected against degradation by either encapsulation within microparticles, or by binding to proteins (mostly AGO2). The particulate forms may be internalized by endocytosis or membrane fusion, but the protein-bound forms require a receptor mechanism for their uptake. A major question is whether there are natural cell-membrane receptors that capture and internalize protein-bound functional miRNAs. We examined neuropilin-1 (NRP1), in view of its properties as a receptor for many ligands, including growth factors such as vascular endothelial growth factor (VEGF), and efficiency at mediating ligand internalization. It is expressed by endothelial cells, many other normal cell types, and cancer cells. Here, we report that NRP1 binds miRNAs with high affinity, and promotes their entry into the cell. Furthermore, the internalized miRNAs remain functional, as they specifically regulate proliferation and migration of cancer cells, as well as tube formation by human endothelial cells. Anti-NRP1 antibodies or NRP1 siRNA knockdown block miRNA effects, further confirming NRP1-mediated uptake. VEGF does not compete with miRNAs for binding to NRP1. In addition, NRP1 binds extracellular AGO2 (carrying miRNA or not), and internalizes AGO2/miRNA complexes. Because miRNA bound to AGO2 appears to the most abundant form in body fluids, this may have important physiological and pathological effects.


Targeting the pro-angiogenic forms of VEGF or inhibiting their expression as anti-cancer strategies.

  • Mélanie Guyot‎ et al.
  • Oncotarget‎
  • 2017‎

Tumor growth relies on oxygen and blood supply depending on neo-vascularization. This process is mediated by the Vascular Endothelial Growth Factor (VEGF) in many tumors. This paradigm has led to the development of specific therapeutic approaches targeting VEGF or its receptors. Despite their promising effects, these strategies have not improved overall survival of patients suffering from different cancers compared to standard therapies. We hypothesized that the existence of anti-angiogenic forms of VEGF VEGFxxxb which are still present in many tumors limit the therapeutic effects of the anti-VEGF antibodies bevacizumab/Avastin (BVZ). To test this hypothesis, we generated renal cell carcinoma cells (RCC) expressing VEGF165b. The incidence of tumors xenografts generated in nude mice and their growth were inferior to those obtained with control cells. Whereas BVZ had no effect on control tumors, it slowed-down the growth of tumor generated with VEGF165b expressing cells. A prophylactic immunization against the domain discriminating VEGF from VEGFxxxb isoforms inhibited the growth of tumor generated with two different syngenic tumor cell lines (melanoma (B16 cells) and RCC (RENCA cells)). Purified immunoglobulins from immunized mice also slowed-down tumor growth of human RCC xenografts in nude mice, producing a potent effect compared to BVZ in this model. Furthermore, down-regulating the serine-arginine-rich splicing factor 1 (SRSF1) or masking SRSF1 binding sites by 2'O-Methyl RNA resulted in the increase of the VEGFxxxb/VEGF ratio. Therefore, a vaccine approach, specific antibodies against pro-angiogenic forms of VEGF, or increasing the VEGFxxxb/VEGF ratio may represent new prophylactic or pro-active anti-cancer strategies.


eNOS polymorphisms and clinical outcome in advanced HCC patients receiving sorafenib: final results of the ePHAS study.

  • Andrea Casadei Gardini‎ et al.
  • Oncotarget‎
  • 2016‎

Sorafenib may reduce endothelial nitric oxide synthase (eNOS) activity by inhibiting vascular endothelial growth factor receptors (VEGF-R), leading to a decrease in nitric oxide production. In the Italian multicenter ePHAS (eNOS polymorphisms in HCC and sorafenib) study, we analyzed the role of eNOS polymorphisms in relation to clinical outcome in patients with hepatocellular carcinoma (HCC) receiving sorafenib. Our retrospective study included a training cohort of 41 HCC patients and a validation cohort of 87 HCC patients, all undergoing sorafenib treatment. Three eNOS polymorphisms (eNOS -786T>C, eNOS VNTR 27bp 4a/b and eNOS+894G>T) were analyzed by direct sequencing or Real Time PCR in relation to progression-free survival (PFS) and overall survival (OS) (log-rank test). In univariate analysis, training cohort patients homozygous for eNOS haplotype (HT1:T-4b at eNOS-786/eNOS VNTR) had a lower median PFS (2.6 vs. 5.8 months, P < 0.0001) and OS (3.2 vs.14.6 months, P = 0.024) than those with other haplotypes. In the validation set, patients homozygous for HT1 had a lower median PFS (2.0 vs. 6.7 months, P < 0.0001) and OS (6.4 vs.18.0 months, P < 0.0001) than those with other haplotypes. Multivariate analysis confirmed this haplotype as the only independent prognostic factor. Our results suggest that haplotype HT1 in the eNOS gene may be capable of identifying a subset of HCC patients who are resistant to sorafenib.


Classification of current anticancer immunotherapies.

  • Lorenzo Galluzzi‎ et al.
  • Oncotarget‎
  • 2014‎

During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.


Prognostic value and their clinical implication of 89-gene signature in glioma.

  • Muhammad Shahid‎ et al.
  • Oncotarget‎
  • 2016‎

Gliomas are the most common and aggressive primary tumors in adults. The current approaches, such as histological classification and molecular genetics, have limitation in prediction of individual therapeutic outcomes due to heterogeneity within the tumor groups. Recent studies have proposed several gene signatures to predict glioma's prognosis. However, most of the gene expression profiling studies have been performed on relatively small number of patients and combined probes from diverse microarray chips. Here, we identified prognostic 89 common genes from diverse microarray chips. The 89-gene signature classified patients into good and bad prognostic groups which differed in the overall survival significantly, reflecting the biological characteristics and heterogeneity. The robustness and accuracy of the gene signature as an independent prognostic factor was validated in three microarray and one RNA-seq data sets independently. By incorporating into histological classification and molecular marker, the 89-gene signature could further stratify patients with 1p/19q co-deletion and IDH1 mutation. Additionally, subset analyses suggested that the 89-gene signature could predict patients who would benefit from adjuvant chemotherapy. Conclusively, we propose that the 89-gene signature would have an independent and accurate prognostic value for clinical use. This study also offers opportunities for novel targeted treatment of individual patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: