Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs.

  • E Gebke‎ et al.
  • Neuroscience‎
  • 1998‎

The subfornical organ and organum vasculosum laminae terminalis represent neuroglial circumventricular organ structures bordering the anterior third cerebral ventricle. Owing to the absence of the blood-brain barrier, the cellular elements of the subfornical organ and the organum vasculosum laminae terminalis can be reached by circulating messenger molecules transferring afferent information. As demonstrated for the control of extracellular fluid composition, the circulating hormone angiotensin II acts on these sensory circumventricular organs to induce drinking, elevated peripheral resistance and neurohypophyseal hormone release via interaction with membrane-spanning receptor proteins. To characterize the cell-specific distribution of angiotensin II receptors within the circumventricular organs, primary cell cultures derived from the subfornical organ or organum vasculosum laminae terminalis of five- to six-day-old rat pups were used to measure alterations in intracellular calcium at the single cell level. Neurons and astrocytes were identified by immunocytochemical staining for specific marker proteins. Bath application of angiotensin II (10(-10)-10(-6) M) dose-dependently induced calcium transients in neurons (19.6%) and astrocytes (15.7%), and angiotensin II threshold concentrations to elicit intracellular calcium signalling proved to be one order of magnitude higher in astrocytes as compared to neurons (10(-9) M). At angiotensin II concentrations higher than 10(-7) M, pronounced desensitization of the angiotensin II receptor occurred. Employing the angiotensin II receptor antagonists losartan (DUP-753; AT1-receptor) and PD-123319 (AT2-receptor), exclusive expression of the AT1 receptor subtype coupled to intracellular calcium concentration signalling could be demonstrated for neurons and astrocytes. In all cells examined, the angiotensin II-evoked increase in intracellular calcium concentrations could be fully suppressed in the absence of extracellular calcium. Co-activation by angiotensin II and other agents (vasopressin, its fragment 8-arginine-vasopressin(4-9), oxytocin, endothelin) was indicated for subfornical organ neurons and organum vasculosum laminae terminalis astrocytes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: