Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Involvement of Spinal Cannabinoid CB2 Receptors in Exercise-Induced Antinociception.

  • Rafaela Silva Dos Santos‎ et al.
  • Neuroscience‎
  • 2019‎

Muscle pain affects approximately 11-24% of the global population. Several studies have shown that exercise is a non-pharmacological therapy to pain control. It has been suggested that the endocannabinoid system is involved in this antinociceptive effect. However, the participation of this pathway is unclear. The present study aimed to investigate whether spinal cannabinoid CB2 receptors participate in the exercise-induced antinociception. The inflammatory muscle pain model was induced by the intramuscular injection of carrageenan. Tactile allodynia and thermal hyperalgesia were determined with the von Frey filaments and hot-plate tests. C57BL/6J female mice underwent a swimming training protocol that lasted 3 weeks. This protocol of exercise reduced carrageenan-induced tactile allodynia and thermal hyperalgesia and this effect was prevented by the cannabinoid CB2 receptors inverse agonist AM630 and potentiated by MAFP (inhibitor of the enzyme that metabolizes endocannabinoids) and minocycline (microglia inhibitor). In addition, exercise increased the endocannabinoid anandamide levels and cannabinoid CB2 receptors expression whereas it reduced Iba1 (microglial marker) protein expression as well as pro-inflammatory cytokines (TNF-α and IL-1β) in the spinal cord of mice with inflammatory muscle pain. Swimming training also reduced muscle temperature of carrageen-treated animals. The present study suggests that activation of spinal cannabinoid CB2 receptors and reduction of activated microglia are involved in exercise-induced antinociception.


Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.

  • K M Small‎ et al.
  • Neuroscience‎
  • 2013‎

To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. E2BSA [β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin] (0.5mM), a membrane impermeant analog of estradiol, injected intrathecally immediately prior to orphanin FQ (OFQ;10 nmol), the endogenous ligand for the ORL1 receptor, abolished OFQ's antinociceptive effect in both male and ovariectomized (OVX) female rats, assessed using the heat-induced tail-flick assay. This effect was not altered by protein synthesis inhibitor, anisomycin (125 μg), given intrathecally 15 min prior to E2BSA and OFQ. Intrathecal application of selective receptor agonists permitted the relative contributions of various estrogen receptors in mediating this blockade of the antinociceptive response of OFQ. Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females.


Dopamine D3 receptors modulate the rate of neuronal recovery, cell recruitment in Area X, and song tempo after neurotoxic damage in songbirds.

  • Kristina Lukacova‎ et al.
  • Neuroscience‎
  • 2016‎

Songbirds, like humans, learn vocalizations and their striatum recruits new neurons in adulthood. Injury in striatal vocal nucleus Area X, involved in song learning and production in songbirds, is followed by massive regeneration. The newborn neurons arise from the subventricular zone (SVZ) rich in dopamine D3 receptors (D3Rs). The aim of this study was to investigate whether the D3Rs affect the rate of neuronal recovery in Area X. Male zebra finches (Taeniopygia guttata) received bilateral neurotoxic lesion of Area X and were implanted with osmotic minipumps containing D3R agonist 7-OH-DPAT, antagonist U99194, or saline. Treatment with 7-OH-DPAT but not U99194 led to significant reduction of lesion size and increased numbers of migrating neuroblasts and newborn cells in the Area X. These cells were detected in the lesion border as well as the lesion center. Lesion also led to increased mRNA expression of the D3Rs in the neurogenic SVZ and in the nucleus robustus arcopallialis (RA) involved in song production. Moreover, lesion alone prolonged the song duration and this may be facilitated by D3Rs in RA. Parallel lesion and stimulation of D3Rs prolonged it even more, while blocking of D3Rs abolished the lesion-induced effect. These data suggest that D3R stimulation after striatal injury accelerates the striatal recovery and can cause behavioral alterations.


Quantitation of neurokinin 1 receptor internalization and recycling in guinea-pig myenteric neurons.

  • B R Southwell‎ et al.
  • Neuroscience‎
  • 1998‎

Agonist-induced endocytosis and recycling of G protein-coupled receptors contributes to desensitization and resensitization of the receptors. In this study, we have used fluorescence immunohistochemistry, confocal microscopy and digital image analysis to quantify the proportion of receptor in the cytoplasm and on the surfaces of nerve cells in the guinea-pig ileum. With these methods we examined the dynamics of internalization of the neurokinin 1 receptor in response to agonist, return of receptor to the cell membrane and its capacity to be re-internalized in response to further exposure to agonist. The basal level of neurokinin 1 receptor immunoreactivity in the cytoplasm was 12-15% of total cellular immunoreactivity. Concentration-response relations were generated for neurokinin 1 receptor internalization after incubation of isolated ileum with 10(-11) to 10(-6) M substance P at 4 degrees C and warming to 37 degrees C for 20 min. The threshold concentration for cytoplasmic receptor to exceed baseline was 10(-11) M and the proportion of receptor in the cytoplasm increased with increasing substance P concentration. The effect of two exposures to agonist was studied using 10(-8) M and 10(-6) M substance P. After equilibration with substance P at 4 degrees C for 1 h followed by 20 min at 37 degrees C with no substance P, neurokinin 1 receptor immunoreactivity in the cytoplasm increased significantly from 12% to 36+/-3% for incubation with 10(-8) M and to 64+/-3% for 10(-6) M. When return of receptor to the surface was blocked with monensin (10(-5) M), 90% of the receptor was in the cytoplasm after 1 h at 37 degrees C following exposure to 10(-6) M substance P. After 60 min without substance P and no monensin, receptor in the cytoplasm decreased to 19+/-2% (10(-8) M) and 38+/-4% (10(-6) M). A second period of equilibration with substance P at 4 degrees C for 1 h followed by 20 min at 37 degrees C, without substance P, resulted in a second wave of endocytosis; the fractions of receptor in the cytoplasm were 47+/-2% (10(-8) M) and 70 2% (10(-6) M). These results indicate that most of the receptors on the cell surface are available for internalization and that the receptors that return to the cell surface after endocytosis rapidly regain their ability to bind ligand and undergo endocytosis.


The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration.

  • E R Lowry‎ et al.
  • Neuroscience‎
  • 2013‎

Though the GluK4 kainate receptor subunit shows limited homology and a restricted expression pattern relative to other kainate receptor subunits, its ablation results in distinct behavioral and molecular phenotypes. GluK4 knockout mice demonstrated impairments in memory acquisition and recall in a Morris water maze test, suggesting a previously unreported role for kainate receptors in spatial memory. GluK4 knockout mice also showed marked hyperactivity and impaired pre-pulse inhibition, thereby mirroring two of the hallmark endophenotypes of patients with schizophrenia and bipolar disorder. Furthermore, we found that GluK4 is a key mediator of excitotoxic neurodegeneration: GluK4 knockout mice showed robust neuroprotection in the CA3 region of the hippocampus following intrahippocampal injection of kainate and widespread neuroprotection throughout the hippocampus following hypoxia-ischemia. Biochemical analysis of kainate- or sham-treated wild-type and GluK4 knockout hippocampal tissue suggests that GluK4 may act through the JNK pathway to regulate the molecular cascades that lead to excitotoxicity. Together, our findings suggest that GluK4 may be relevant to the understanding and treatment of human neuropsychiatric and neurodegenerative disorders.


The subcellular and cellular distribution of G protein-coupled receptor kinase 2 in rat brain.

  • C Murga‎ et al.
  • Neuroscience‎
  • 1998‎

G protein-coupled receptor kinase 2 has been found to phosphorylate and thus regulate the activity of several G protein-coupled receptors implicated in neuronal signalling pathways. Although this kinase was initially described as a soluble protein, our laboratory has recently found that a significant amount of G protein-coupled receptor kinase 2 is associated with microsomal membranes in liver and different types of cultured cells. In the present report we show that high G protein-coupled receptor kinase 2 specific activity and protein levels are present in microsomal fractions of rat brain homogenates. On the other hand, immunochemical detection using a new antibody raised against the N-terminus of the kinase revealed a specific and widely distributed staining in different areas of the central nervous system, and the association of G protein-coupled receptor kinase 2 with intracellular structures in nervous cells. Our results further suggest that this receptor kinase may be involved in the modulation of G protein-coupled receptor-mediated neurotransmission and that association with microsomal membranes may play a role in G protein-coupled receptor kinase 2 functions in the brain.


Activin co-operates with fibroblast growth factor 2 to regulate tyrosine hydroxylase expression in the basal forebrain ventricular zone progenitors.

  • M Daadi‎ et al.
  • Neuroscience‎
  • 1998‎

Activin and its cognate receptors are expressed during embryogenesis in the rapidly dividing cells of the basal forebrain ventricular zone. This finding prompted us to study the role of activin in regulating neurotransmitter phenotype expression and other aspects of the ventricular zone-derived progenitor cell differentiation. Although virtually ineffective alone, activin co-operated with fibroblast growth factor 2 to induce a rapid tyrosine hydroxylase-immunoreactivity in cultured ventricular zone progenitors. Northern analysis indicated that the increase in tyrosine hydroxylase-immunoreactivity was associated with increased tyrosine hydroxylase gene expression. Activin and fibroblast growth factor 2 action was specific to tyrosine hydroxylase, as it did not induce the expression of choline acetyltransferase, nor enhance the expression of glutamate decarboxylase. Cultures treated with the DNA replication marker bromodeoxyuridine revealed that both proliferating ventricular zone progenitors and their post-mitotic progeny were induced to express tyrosine hydroxylase. In these cultures, activin acted to reduce fibroblast growth factor 2 stimulated mitotic activity. Furthermore, activin permitted neuronal differentiation and survival of the ventricular zone progenitors after three days in vitro. Together these data demonstrate a novel role of activin and fibroblast growth factor 2 in regulating the fate of the embryonic basal forebrain ventricular zone progenitors.


Prolactin, Estradiol and Testosterone Differentially Impact Human Hippocampal Neurogenesis in an In Vitro Model.

  • Demelza M Smeeth‎ et al.
  • Neuroscience‎
  • 2021‎

Previous studies have indicated that sex hormones such as prolactin, estradiol and testosterone may play a role in the modulation of adult hippocampal neurogenesis (AHN) in rodents and non-human primates, but so far there has been no investigation of their impact on human hippocampal neurogenesis. Here, we quantify the expression levels of the relevant receptors in human post-mortem hippocampal tissue and a human hippocampal progenitor cell (HPC) line. Secondly, we investigate how these hormones modulate hippocampal neurogenesis using a human in vitro cellular model. Human female HPCs were cultured with biologically relevant concentrations of either prolactin, estradiol or testosterone. Bromodeoxyuridine (BrdU) incorporation, immunocytochemistry (ICC) and high-throughput analyses were used to quantify markers determining cell fate after HPCs were either maintained in a proliferative state or allowed to differentiate in the presence of these hormones. In proliferating cells, estrogen and testosterone increased cell density but had no clear effect on markers of proliferation or cell death to account for this. In differentiating cells, a 3-day treatment of prolactin elicited a transient effect, whereby it increased the proportion of microtubule-associated protein 2 (MAP2)-positive and Doublecortin (DCX)-positive cells, but this effect was not apparent after 7-days. At this timepoint we instead observe a decrease in proliferation. Overall, our study demonstrates relatively minor, and possibly short-term effects of sex hormones on hippocampal neurogenesis in human cells. Further work will be needed to understand if our results differ to previous animal research due to species-specific differences, or whether it relates to limitations of our in vitro model.


Allopregnanolone increases mature excitatory synapses along dendrites via protein kinase A signaling.

  • H Shimizu‎ et al.
  • Neuroscience‎
  • 2015‎

Allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) is synthesized in both the periphery and central nervous system and is known to be a potent positive allosteric modulator of the GABAA receptor. Because APα was suggested to improve the symptoms of depression and Alzheimer's disease (AD), which involve synaptic dysfunction and loss, we examined whether APα affects excitatory synapses. Drebrin, which is an actin-binding protein, forms a unique stable actin structure in dendritic spines, and drebrin levels correlate positively with cognitive levels in AD and mild cognitive impairment. We investigated whether APα increases excitatory synapse density along dendrites of mature hippocampal neurons using drebrin-imaging-based evaluation of mature synapses. We prepared primary cultures of hippocampal neurons and either transfected them with GFP or immunostained them against drebrin. Morphological analysis of GFP-transfected neurons revealed that a 24-h exposure to 0.3 or 1 μM APα significantly increased dendritic spine density without any morphological changes to spines. Drebrin cluster density was also increased by 0.3 and 1 μM APα. The protein kinase A (PKA) inhibitor H-89 inhibited the APα-induced increase in drebrin cluster density. These data demonstrate that APα increases mature excitatory synapses via activation of PKA. Therefore, the PKA-cAMP response element-binding protein (CREB) signaling pathway is likely to be involved in the APα-induced increase of mature excitatory synapses. Another possibility is that the PKA-dependent increase in AMPA receptors at dendritic spines mediates the APα function. In conclusion, our study indicates that APα may improve neuropsychiatric disorder outcomes via increasing the numbers of mature excitatory synapses.


Estrogen prevents glutamate-induced apoptosis in C6 glioma cells by a receptor-mediated mechanism.

  • E A Sribnick‎ et al.
  • Neuroscience‎
  • 2006‎

Estrogen-mediated neuroprotection is well established; however, no single mechanism of action for this effect has yet been established. As glial cells are integral for both the intact and injured nervous system, we hypothesized that estrogen-mediated neuroprotection may partly be attributed to attenuation of glial cell apoptosis, allowing them to protect neurons following injury. To assess the protective effects of estrogen on glia, C6 rat glioma cells were treated for 24 h with 500 microM glutamate. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and apoptosis was confirmed by cell morphology and DNA fragmentation. Pretreatment with 10 nM 17beta-estradiol (estrogen) increased cell viability and attenuated apoptosis. Treatment with the stereoisomer 17alpha-estradiol, or estrogen plus estrogen receptor antagonist ICI 182,780, was significantly less effective, indicating that cytoprotection was receptor-mediated. Estrogen treatment upregulated expression of estrogen receptor alpha. Cell impermeable bovine serum albumin-conjugated estrogen was also protective, indicating activation of estrogen receptors on the cell membrane. Intracellular free [Ca2+] was increased after glutamate treatment. This increase was attenuated in cells pretreated with estrogen. Glutamate increased the activity of pro-apoptotic proteases, such as calpain and caspase-3, and these protease activities were significantly attenuated by estrogen. The mechanism by which estrogen decreased intracellular Ca2+ was examined by assaying cell viability after using inhibitors that either blocked extracellular Ca2+ influx or prevented the release of intracellular Ca2+ stores. While several inhibitors increased cell viability in glutamate-treated cells, none were as protective as estrogen, and estrogen co-treatment significantly increased cell viability. These findings indicate that estrogen-mediated cytoprotection may be related to effects on Ca2+ entry but that these effects are not limited to any one of these Ca2+ entry points alone.


Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates α2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat.

  • S Nag‎ et al.
  • Neuroscience‎
  • 2014‎

Though sex differences in pain and analgesia are known, underlying mechanisms remain elusive. This study addresses the selective contribution of membrane estrogen receptors (mERs) and mER-initiated non-genomic signaling mechanisms in our previously reported estrogen-induced attenuation of α2-adrenoceptor-mediated antinociception. By selectively targeting spinal mERs in ovariectomized female rats using β-estradiol 6-(O-carboxy-methyl)oxime bovine serum albumin (E2BSA) (membrane impermeant estradiol analog), and ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), G-protein-coupled estrogen receptor 30 (GPR30) agonist G1 and Gq-coupled mER (Gq-mER) agonist STX, we provide strong evidence that Gq-mER activation may solely contribute to suppressing clonidine (an α2-adrenoceptor agonist)-induced antinociception, using the nociceptive tail-flick test. Increased tail-flick latencies (TFLs) by intrathecal (i.t.) clonidine were not significantly altered by i.t. PPT, DPN, or G1. In contrast, E2BSA or STX rapidly and dose-dependently attenuated clonidine-induced increase in TFL. ICI 182,780, the ER antagonist, blocked this effect. Consistent with findings with the lack of effect of ERα and ERβ agonists that modulate receptor-regulated transcription, inhibition of de novo protein synthesis using anisomycin also failed to alter the effect of E2BSA or STX, arguing against a contribution of genomic mechanisms. Immunoblotting of spinal tissue revealed that mER activation increased levels of phosphorylated extracellular signal-regulated kinase (ERK) but not of protein kinase A (PKA) or C (PKC). In vivo inhibition of ERK with U0126 blocked the effect of STX and restored clonidine antinociception. Although estrogen-induced delayed genomic mechanisms may still exist, data presented here indicate that Gq-mER may solely mediate estradiol-induced attenuation of clonidine antinociception via a rapid, reversible, and ERK-dependent, non-genomic mechanism, suggesting that Gq-mER blockade might provide improved analgesia in females.


Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs.

  • E Gebke‎ et al.
  • Neuroscience‎
  • 1998‎

The subfornical organ and organum vasculosum laminae terminalis represent neuroglial circumventricular organ structures bordering the anterior third cerebral ventricle. Owing to the absence of the blood-brain barrier, the cellular elements of the subfornical organ and the organum vasculosum laminae terminalis can be reached by circulating messenger molecules transferring afferent information. As demonstrated for the control of extracellular fluid composition, the circulating hormone angiotensin II acts on these sensory circumventricular organs to induce drinking, elevated peripheral resistance and neurohypophyseal hormone release via interaction with membrane-spanning receptor proteins. To characterize the cell-specific distribution of angiotensin II receptors within the circumventricular organs, primary cell cultures derived from the subfornical organ or organum vasculosum laminae terminalis of five- to six-day-old rat pups were used to measure alterations in intracellular calcium at the single cell level. Neurons and astrocytes were identified by immunocytochemical staining for specific marker proteins. Bath application of angiotensin II (10(-10)-10(-6) M) dose-dependently induced calcium transients in neurons (19.6%) and astrocytes (15.7%), and angiotensin II threshold concentrations to elicit intracellular calcium signalling proved to be one order of magnitude higher in astrocytes as compared to neurons (10(-9) M). At angiotensin II concentrations higher than 10(-7) M, pronounced desensitization of the angiotensin II receptor occurred. Employing the angiotensin II receptor antagonists losartan (DUP-753; AT1-receptor) and PD-123319 (AT2-receptor), exclusive expression of the AT1 receptor subtype coupled to intracellular calcium concentration signalling could be demonstrated for neurons and astrocytes. In all cells examined, the angiotensin II-evoked increase in intracellular calcium concentrations could be fully suppressed in the absence of extracellular calcium. Co-activation by angiotensin II and other agents (vasopressin, its fragment 8-arginine-vasopressin(4-9), oxytocin, endothelin) was indicated for subfornical organ neurons and organum vasculosum laminae terminalis astrocytes.


Connexin and AMPA receptor expression changes over time in the rat olfactory bulb.

  • J T Corthell‎ et al.
  • Neuroscience‎
  • 2012‎

Circadian rhythms affect olfaction by an unknown molecular mechanism. Independent of the suprachiasmatic nuclei, the mammalian olfactory bulb (OB) has recently been identified as a circadian oscillator. The electrical activity in the OB was reported to be synchronized to a daily rhythm and the clock gene, Period1, was oscillatory in its expression pattern. Because gap junctions composed of connexin36 and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) have been reported to work together to synchronize firing of action potentials in the OB, we hypothesized that circadian electrical oscillations could be synchronized by daily changes in the expression of connexins and AMPAR subunits (GluR1-4). We examined the OB for the presence of clock genes by polymerase chain reaction (PCR) and whether Period2, connexins, and AMPARs fluctuated across the light/dark cycle by quantitative PCR or SDS-PAGE/Western blot analysis. We observed significant changes in the messenger RNA and protein expression of our targets across 24 or 48 h. Whereas most targets were rhythmic by some measures, only GluR1 mRNA and protein were both rhythmic by the majority of our tests of rhythmicity across all time scales. Differential expression of these synaptic proteins over the light/dark cycle may underlie circadian synchronization of action potential firing in the OB or modify synaptic interactions that would be predicted to impact olfactory coding, such as alteration of granule cell inhibition, increased number of available AMPARs to bind glutamate, or an increased gap junction conductance between mitral/tufted cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: