Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 138 papers

Pyrroloquinoline quinone induces chondrosarcoma cell apoptosis by increasing intracellular reactive oxygen species.

  • Linchun Wen‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Pyrroloquinoline quinone (PQQ) has been reported to contribute to cancer cell apoptosis and death; however, little is known of its underlying mechanisms. The present study was designed to investigate the role of PQQ in chondrosarcoma cell apoptosis and the underlying mechanism. A cell cytotoxicity assay was used to detect cell death; flow cytometry analysis was also performed to determine cell apoptosis and intracellular reactive oxygen species (ROS). Biochemical methods were employed to detect the activity and the expression of superoxide dismutase (SOD)1, SOD2 and glutathione. The present study also examined the effect on tumorigenesis in vivo. The results demonstrated that the apoptosis of SW1353 cells induced by PQQ increased in a concentration‑ and time‑dependent manner, which may be attributable to the accumulation of intracellular ROS. In the in vivo experiments, PQQ inhibited proliferation and promoted apoptosis, increased ROS levels and caused DNA damage in transplanted cells. Taken together, the findings of the present study confirmed that PQQ induced apoptosis in human chondrosarcoma SW1353 cells and transplanted cells, by increasing intracellular ROS and reducing the ability of scavenging oxygen free radicals.


Metformin Inhibits HaCaT Cell Proliferation Under Hyperlipidemia Through Reducing Reactive Oxygen Species via FOXO3 Activation.

  • Li Zhang‎ et al.
  • Clinical, cosmetic and investigational dermatology‎
  • 2022‎

Metformin (MET) has been proved to be effective for the treatment of psoriasis. The mechanisms of its action under the hyperlipidemia have yet to be fully elucidated. Here, we investigated the effect of metformin on the cell proliferation induced by hyperlipidemia and the underlying mechanism in immortalized human keratinocyte cell line (HaCat).


Noninvasive bioluminescence imaging of the dynamics of sanguinarine induced apoptosis via activation of reactive oxygen species.

  • Yan Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Most chemotherapeutic drugs exert their anti-tumor effects primarily by triggering a final pathway leading to apoptosis. Noninvasive imaging of apoptotic events in preclinical models would greatly facilitate the development of apoptosis-inducing compounds and evaluation of their therapeutic efficacy. Here we employed a cyclic firefly luciferase (cFluc) reporter to screen potential pro-apoptotic compounds from a number of natural agents. We demonstrated that sanguinarine (SANG) could induce apoptosis in a dose- and time-dependent manner in UM-SCC-22B head and neck cancer cells. Moreover, SANG-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and activation of c-Jun-N-terminal kinase (JNK) and nuclear factor-kappaB (NF-κB) signal pathways. After intravenous administration with SANG in 22B-cFluc xenograft models, a dramatic increase of luminescence signal can be detected as early as 48 h post-treatment, as revealed by longitudinal bioluminescence imaging in vivo. Remarkable apoptotic cells reflected from ex vivo TUNEL staining confirmed the imaging results. Importantly, SANG treatment caused distinct tumor growth retardation in mice compared with the vehicle-treated group. Taken together, our results showed that SANG is a candidate anti-tumor drug and noninvasive imaging of apoptosis using cFluc reporter could provide a valuable tool for drug development and therapeutic efficacy evaluation.


Pentoxifylline induces apoptosis of HepG2 cells by reducing reactive oxygen species production and activating the MAPK signaling.

  • Yan Wang‎ et al.
  • Life sciences‎
  • 2017‎

Pentoxifylline (PTX) is a methylxanthine derivative and has potent anti-tumor activity. This study aimed at investigating the anti-HCC effects of PTX and associated molecular mechanisms.


Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells.

  • Guozhu Chen‎ et al.
  • BMC cancer‎
  • 2011‎

Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.


Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells.

  • Kaihua Ji‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation.

  • Jian Sun‎ et al.
  • International journal of oncology‎
  • 2019‎

α‑hederin, a monodesmosidic triterpenoid saponin, had previously demonstrated strong anticancer effects. In the current study, the pharmacological mechanism of autophagic cell death induced by α‑hederin was investigated in human colorectal cancer cells. First, through cell counting kit‑8 and colony formation assays, it was demonstrated that α‑hederin could inhibit the proliferation of HCT116 and HCT8 cell. Results of flow cytometry using fluorescein isothiocyanate Annexin V/propidium iodide and Hoechst 33258 staining indicated that α‑hederin could induce apoptosis. Western blotting demonstrated that α‑hederin could activate mitochondrial apoptosis signal pathway. Then, using light chain 3 lentiviral and electron microscope assay, it was demonstrated that α‑hederin could induce autophagy in colorectal cancer cells. In addition, immunohistochemistry results from in vivo experiments also demonstrated that α‑hederin could induce autophagy. AMP‑activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling was demonstrated to be activated by α‑hederin, which could be blocked by reactive oxygen species (ROS) inhibitor NAC. Furthermore, NAC could inhibit apoptosis and autophagy induced by α‑hederin. Finally, 3‑MA (autophagy inhibitor) reduced the inhibition of α‑hederin on cell activity, but it had no significant effect on apoptosis. In conclusion, α‑hederin triggered apoptosis through ROS‑activated mitochondrial signaling pathway and autophagic cell death through ROS dependent AMPK/mTOR signaling pathway activation in colorectal cancer cells.


Reactive oxygen species levels control NF-κB activation by low dose deferasirox in erythroid progenitors of low risk myelodysplastic syndromes.

  • Mathieu Meunier‎ et al.
  • Oncotarget‎
  • 2017‎

Anemia is a frequent cytopenia in myelodysplastic syndromes (MDS) and most patients require red blood cell transfusion resulting in iron overload (IO). Deferasirox (DFX) has become the standard treatment of IO in MDS and it displays positive effects on erythropoiesis. In low risk MDS samples, mechanisms improving erythropoiesis after DFX treatment remain unclear. Herein, we addressed this question by using liquid cultures with iron overload of erythroid precursors treated with low dose of DFX (3μM), which corresponds to DFX 5 mg/kg/day, an unusual dose used for iron chelation. We highlight a decreased apoptosis rate and an increased proportion of cycling cells, both leading to higher proliferation rates. The iron chelation properties of low dose DFX failed to activate the Iron Regulatory Proteins and to support iron depletion, but low dose DFX dampers intracellular reactive oxygen species. Furthermore low concentrations of DFX activate the NF-κB pathway in erythroid precursors triggering anti-apoptotic and anti-inflammatory signals. Establishing stable gene silencing of the Thioredoxin (TRX) 1 genes, a NF-κB modulator, showed that fine-tuning of reactive oxygen species (ROS) levels regulates NF-κB. These results justify a clinical trial proposing low dose DFX in MDS patients refractory to erythropoiesis stimulating agents.


Reactive oxygen species-responsive HET0016 prodrug-loaded liposomes attenuate neuroinflammation and improve neurological deficit in a rat model of juvenile traumatic brain injury.

  • Jun Qin‎ et al.
  • Frontiers in neuroscience‎
  • 2023‎

The arachidonic acid pathway metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia/reperfusion brain injury. Inhibition of 20-HETE formation can protect the developing brain from global ischemia. In previous studies, we have found that treatment with the 20-HETE synthesis inhibitor N-hydroxy-N-4-butyl-2-methylphenylformamidine (HET0016) can protect the immature brain from traumatic brain injury (TBI), but its hydrophobic nature limits its full potential. We designed a reactive oxygen species-responsive HET0016 prodrug, which consists of a thioketal link between HET0016 and stearyl alcohol (HET-TK-SA), and used the nanoprodrug strategy to successfully synthesize liposomes HET0016 prodrug liposomes (HPLs) to facilitate the application of HET0016 in protection from TBI. HPLs demonstrated spherical shape, size of about 127.8 nm, a zeta potential of -28.8 mv, a narrow particle size distribution and good stability. Male rats at postnatal day 16-17 underwent controlled cortical impact (CCI) followed by intravenous injection with vehicle or HET0016 (1 mg/kg, 2 h post-injury, once/day for 3 days). The results of the in vivo demonstrated that HPLs has good biosafety and can pass through the blood-brain barrier. Not only that compared with HET0016, HPLs better-inhibited inflammation and improved neuronal degeneration, which further led to lesion volume reduction, upgraded behavioral task performance, and ameliorated the degree of TBI impairment. Our results demonstrated HPLs could be a new strategy for juvenile TBI therapy.


Qian Yang Yu Yin Granule-containing serum inhibits angiotensin II-induced proliferation, reactive oxygen species production, and inflammation in human mesangial cells via an NADPH oxidase 4-dependent pathway.

  • Kang Ding‎ et al.
  • BMC complementary and alternative medicine‎
  • 2015‎

Qian Yang Yu Yin Granule (QYYYG), a traditional Chinese herbal medicine, has been indicated for renal damage in hypertension for decades in China, but little remains known regarding its underlying molecular mechanism. Therefore, we performed the current study in order to investigate the underlying molecular mechanism of QYYYG in the treatment of hypertensive renal damage.


ROS-dependent catalytic mechanism of melatonin metabolism and its application in the measurement of reactive oxygen.

  • Xiangge Tian‎ et al.
  • Frontiers in chemistry‎
  • 2023‎

Melatonin (Mel) is an endogenous active molecule whose metabolism progress significantly influences its bioactivity. However, the detailed metabolic pathway of Mel in the pathological state has not yet been fully illustrated. In this study, 16 metabolites of Mel in cancer cells and human liver microsomes were identified, of which seven novel metabolites were newly discovered. Among them, 2-hydroxymelatonin (2-O-Mel), as the major metabolite in cancer cells, was revealed for the first time, which was different from the metabolite found in the human liver. Furthermore, CYP1A1/1A2- and reactive oxygen species (ROS)-mediated 2-hydroxylation reactions of Mel were verified to be the two metabolic pathways in the liver and cancer cells, respectively. ROS-dependent formation of 2-O-Mel was the major pathway in cancer cells. Furthermore, the underlying catalytic mechanism of Mel to 2-O-Mel in the presence of ROS was fully elucidated using computational chemistry analysis. Therefore, the generation of 2-O-Mel from Mel could serve as another index for the endogenous reactive oxygen level. Finally, based on the ROS-dependent production of 2-O-Mel, Mel was successfully used for detecting the oxygen-carrying capacity of hemoglobin in human blood. Our investigation further enriched the metabolic pathway of Mel, especially for the ROS-dependent formation of 2-O-Mel that serves as a diagnostic and therapeutic target for the rational use of Mel in clinics.


The new insights of hyperbaric oxygen therapy: focus on inflammatory bowel disease.

  • Leilei Chen‎ et al.
  • Precision clinical medicine‎
  • 2024‎

Inflammatory bowel diseases (IBD), with an increasing incidence, pose a significant health burden. Although there have been significant advances in the treatment of IBD, more progress is still needed. Hyperbaric oxygen therapy (HBOT) has been shown to treat a host of conditions such as carbon monoxide poisoning, decompression sickness, and gas gangrene. In the last few years, there has been an increase in research into the use of HBOT as an adjunct to conventional treatment for IBD. Related research has shown that HBOT may exert its therapeutic effects by decreasing oxidative stress, inhibiting mucosal inflammation, promoting ulcer healing, influencing gut microbes, and reducing the incidence of IBD complications. This paper aims to provide a comprehensive review of experimental and clinical trials exploring HBOT as a supplement to IBD treatment strategies.


Oxygen partial pressure plays a crucial role in B16 melanoma cell survival by regulating autophagy and mitochondrial functions.

  • Yuqing Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

The oxygen partial pressure generally increases when cancerous cells become part of the blood vessels. The study was to investigate the influence of oxygen partial pressure on the apoptosis of B16 melanoma cells. Our results demonstrated that both short-term and long-term hypoxia/reoxygenation (H/R) treatment increased stress-induced intracellular reactive oxygen species (ROS). H/R treatment also increased apoptosis and autophagy in B16 cells. N-acetylcysteine (NAC), a ROS scavenger, can reduce ROS and aid survival. However, Bafilomycin A1, an autophagy inhibitor, can accelerate cell death. Thus, our work revealed that ROS and autophagy play critical roles in cellular H/R.


Establishment of a 13 genes-based molecular prediction score model to discriminate the neurotoxic potential of food relevant-chemicals.

  • Xiaolan Li‎ et al.
  • Toxicology letters‎
  • 2022‎

Although many neurotoxicity prediction studies of food additives have been developed, they are applicable in a qualitative way. We aimed to develop a novel prediction score that is described quantitatively and precisely. We examined cell viability, reactive oxygen species activity, intracellular calcium and RNA transcription level of potential prediction related genes to develop a high-throughput neurotoxicity test method in vitro to screen the neurotoxicity of hazardous factors in food using AI-based machine learning. We trained artificial intelligence models (random forest and neural network) to predict neurotoxicity precisely, establishing a universal classification assessment score (CA-Score) that relies on the expression status of only 13 of prediction related genes. The CA-Score system is almost universally applicable to food risk factors (p<0.05) in a manner independent of platform (microarray or RNA sequencing) by being compared with cut-off value 23.487 to judge whether it's neurotoxic or not. We finally validated our prediction with the external validation of CA-Score on neural precursor cells derived from embryonic stem cells. Therefore, we draw a conclusion that the AI-based machine learning including neural network and random forest is likely to provide a useful tool for large-scale screening of neurotoxicity in food risk factors.


Platelet Membrane-Encapsulated MSNs Loaded with SS31 Peptide Alleviate Myocardial Ischemia-Reperfusion Injury.

  • Zaiyuan Zhang‎ et al.
  • Journal of functional biomaterials‎
  • 2022‎

Clinically, antioxidant therapy is a potential strategy for myocardial ischemia-reperfusion injury (MI/RI), a common complication of acute myocardial ischemia. The H-D-Arg-Dmt-Ly-Phe-NH2 (SS31) peptide is shown to have amazing antioxidant properties, but its utilization is limited by the peptide characteristics, such as the destruction by proteases and rapid metabolism. Silica nanoparticles (MSNs) comprise an excellent material for peptide delivery, owing to the protection effect relating to peptides. Moreover, platelet membrane (PLTM) is shown to be advantageous as a coat for nanosystems because of its specific protein composition, such that a PLTM-coated nanosystem has a stealth effect in vivo, able to target injury in the cardiovascular system. Based on this feature, we designed and prepared a novel nanocarrier to target SS31 delivery. This carrier is encapsulated by a platelet membrane and loaded with SS31 peptide into MSNs. The results reveal that this delivery system can target SS31 to the injured cardiovascular site, exert antioxidant function, and alleviate MI/RI.


Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS.

  • Bin Zhang‎ et al.
  • BMC veterinary research‎
  • 2021‎

Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified.


Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1.

  • Jianguo Li‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Reactive oxygen species can lead to functional alterations in lipids, proteins, and nucleic acids, and an accumulation of ROS (Reactive oxygen species) is considered to be one factor that contributes to neurodegenerative changes. An increase in ROS production occurs following irradiation. Neuronal tissue is susceptible to oxidative stress because of its high oxygen consumption and modest antioxidant defenses. As a polyphenolic compound, resveratrol is frequently used as an activator of Sirt1 (Sirtuin 1). The present study was designed to explore the radioprotective and antioxidant effect of resveratrol on Sirt1 expression and activity induced by radiation and to provide a new target for the development of radiation protection drugs. Our results demonstrate that resveratrol inhibits apoptosis induced by radiation via the activation of Sirt1. We demonstrated an increase in Sirt1 mRNA that was present on 21 days of resveratrol treatment following irradiation in a concentration-dependent manner. Such mRNA increase was accompanied by an increase of Sirt1 protein and activity. Resveratrol effectively antagonized oxidation induced by irradiation, supporting its cellular ROS-scavenging effect. These results provide evidence that the mitochondrial protection and the antioxidant effect of resveratrol contribute to metabolic activity. These data suggest that Sirt1 may play an important role to protect neurons from oxidative stress.


Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.

  • Xingxing Kong‎ et al.
  • PloS one‎
  • 2010‎

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1alpha induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.


Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes.

  • Lina Li‎ et al.
  • Cell & bioscience‎
  • 2016‎

Hydrogen sulfide (H2S), a third member of gasotransmitter family along with nitric oxide and carbon monoxide, generated from mainly catalyzed by cystathionine-lyase, possesses important functions in the cardiovascular system. Ischemic post-conditioning (PC) strongly protects against the hypoxia/reoxygenation (H/R)-induced injury and apoptosis of cardiomyocytes. However, PC protection is ineffective in the aging cardiomyocytes. Whether H2S restores PC-induced cardioprotection by decrease of reactive oxygen species (ROS) level in the aging cardiomyocytes is unknown.


Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

  • Dan Huang‎ et al.
  • PloS one‎
  • 2011‎

Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: