Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 105 papers

Noninvasive bioluminescence imaging of the dynamics of sanguinarine induced apoptosis via activation of reactive oxygen species.

  • Yan Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Most chemotherapeutic drugs exert their anti-tumor effects primarily by triggering a final pathway leading to apoptosis. Noninvasive imaging of apoptotic events in preclinical models would greatly facilitate the development of apoptosis-inducing compounds and evaluation of their therapeutic efficacy. Here we employed a cyclic firefly luciferase (cFluc) reporter to screen potential pro-apoptotic compounds from a number of natural agents. We demonstrated that sanguinarine (SANG) could induce apoptosis in a dose- and time-dependent manner in UM-SCC-22B head and neck cancer cells. Moreover, SANG-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and activation of c-Jun-N-terminal kinase (JNK) and nuclear factor-kappaB (NF-κB) signal pathways. After intravenous administration with SANG in 22B-cFluc xenograft models, a dramatic increase of luminescence signal can be detected as early as 48 h post-treatment, as revealed by longitudinal bioluminescence imaging in vivo. Remarkable apoptotic cells reflected from ex vivo TUNEL staining confirmed the imaging results. Importantly, SANG treatment caused distinct tumor growth retardation in mice compared with the vehicle-treated group. Taken together, our results showed that SANG is a candidate anti-tumor drug and noninvasive imaging of apoptosis using cFluc reporter could provide a valuable tool for drug development and therapeutic efficacy evaluation.


Pentoxifylline induces apoptosis of HepG2 cells by reducing reactive oxygen species production and activating the MAPK signaling.

  • Yan Wang‎ et al.
  • Life sciences‎
  • 2017‎

Pentoxifylline (PTX) is a methylxanthine derivative and has potent anti-tumor activity. This study aimed at investigating the anti-HCC effects of PTX and associated molecular mechanisms.


Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells.

  • Guozhu Chen‎ et al.
  • BMC cancer‎
  • 2011‎

Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.


Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells.

  • Kaihua Ji‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation.

  • Jian Sun‎ et al.
  • International journal of oncology‎
  • 2019‎

α‑hederin, a monodesmosidic triterpenoid saponin, had previously demonstrated strong anticancer effects. In the current study, the pharmacological mechanism of autophagic cell death induced by α‑hederin was investigated in human colorectal cancer cells. First, through cell counting kit‑8 and colony formation assays, it was demonstrated that α‑hederin could inhibit the proliferation of HCT116 and HCT8 cell. Results of flow cytometry using fluorescein isothiocyanate Annexin V/propidium iodide and Hoechst 33258 staining indicated that α‑hederin could induce apoptosis. Western blotting demonstrated that α‑hederin could activate mitochondrial apoptosis signal pathway. Then, using light chain 3 lentiviral and electron microscope assay, it was demonstrated that α‑hederin could induce autophagy in colorectal cancer cells. In addition, immunohistochemistry results from in vivo experiments also demonstrated that α‑hederin could induce autophagy. AMP‑activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling was demonstrated to be activated by α‑hederin, which could be blocked by reactive oxygen species (ROS) inhibitor NAC. Furthermore, NAC could inhibit apoptosis and autophagy induced by α‑hederin. Finally, 3‑MA (autophagy inhibitor) reduced the inhibition of α‑hederin on cell activity, but it had no significant effect on apoptosis. In conclusion, α‑hederin triggered apoptosis through ROS‑activated mitochondrial signaling pathway and autophagic cell death through ROS dependent AMPK/mTOR signaling pathway activation in colorectal cancer cells.


Reactive oxygen species levels control NF-κB activation by low dose deferasirox in erythroid progenitors of low risk myelodysplastic syndromes.

  • Mathieu Meunier‎ et al.
  • Oncotarget‎
  • 2017‎

Anemia is a frequent cytopenia in myelodysplastic syndromes (MDS) and most patients require red blood cell transfusion resulting in iron overload (IO). Deferasirox (DFX) has become the standard treatment of IO in MDS and it displays positive effects on erythropoiesis. In low risk MDS samples, mechanisms improving erythropoiesis after DFX treatment remain unclear. Herein, we addressed this question by using liquid cultures with iron overload of erythroid precursors treated with low dose of DFX (3μM), which corresponds to DFX 5 mg/kg/day, an unusual dose used for iron chelation. We highlight a decreased apoptosis rate and an increased proportion of cycling cells, both leading to higher proliferation rates. The iron chelation properties of low dose DFX failed to activate the Iron Regulatory Proteins and to support iron depletion, but low dose DFX dampers intracellular reactive oxygen species. Furthermore low concentrations of DFX activate the NF-κB pathway in erythroid precursors triggering anti-apoptotic and anti-inflammatory signals. Establishing stable gene silencing of the Thioredoxin (TRX) 1 genes, a NF-κB modulator, showed that fine-tuning of reactive oxygen species (ROS) levels regulates NF-κB. These results justify a clinical trial proposing low dose DFX in MDS patients refractory to erythropoiesis stimulating agents.


Qian Yang Yu Yin Granule-containing serum inhibits angiotensin II-induced proliferation, reactive oxygen species production, and inflammation in human mesangial cells via an NADPH oxidase 4-dependent pathway.

  • Kang Ding‎ et al.
  • BMC complementary and alternative medicine‎
  • 2015‎

Qian Yang Yu Yin Granule (QYYYG), a traditional Chinese herbal medicine, has been indicated for renal damage in hypertension for decades in China, but little remains known regarding its underlying molecular mechanism. Therefore, we performed the current study in order to investigate the underlying molecular mechanism of QYYYG in the treatment of hypertensive renal damage.


ROS-dependent catalytic mechanism of melatonin metabolism and its application in the measurement of reactive oxygen.

  • Xiangge Tian‎ et al.
  • Frontiers in chemistry‎
  • 2023‎

Melatonin (Mel) is an endogenous active molecule whose metabolism progress significantly influences its bioactivity. However, the detailed metabolic pathway of Mel in the pathological state has not yet been fully illustrated. In this study, 16 metabolites of Mel in cancer cells and human liver microsomes were identified, of which seven novel metabolites were newly discovered. Among them, 2-hydroxymelatonin (2-O-Mel), as the major metabolite in cancer cells, was revealed for the first time, which was different from the metabolite found in the human liver. Furthermore, CYP1A1/1A2- and reactive oxygen species (ROS)-mediated 2-hydroxylation reactions of Mel were verified to be the two metabolic pathways in the liver and cancer cells, respectively. ROS-dependent formation of 2-O-Mel was the major pathway in cancer cells. Furthermore, the underlying catalytic mechanism of Mel to 2-O-Mel in the presence of ROS was fully elucidated using computational chemistry analysis. Therefore, the generation of 2-O-Mel from Mel could serve as another index for the endogenous reactive oxygen level. Finally, based on the ROS-dependent production of 2-O-Mel, Mel was successfully used for detecting the oxygen-carrying capacity of hemoglobin in human blood. Our investigation further enriched the metabolic pathway of Mel, especially for the ROS-dependent formation of 2-O-Mel that serves as a diagnostic and therapeutic target for the rational use of Mel in clinics.


The new insights of hyperbaric oxygen therapy: focus on inflammatory bowel disease.

  • Leilei Chen‎ et al.
  • Precision clinical medicine‎
  • 2024‎

Inflammatory bowel diseases (IBD), with an increasing incidence, pose a significant health burden. Although there have been significant advances in the treatment of IBD, more progress is still needed. Hyperbaric oxygen therapy (HBOT) has been shown to treat a host of conditions such as carbon monoxide poisoning, decompression sickness, and gas gangrene. In the last few years, there has been an increase in research into the use of HBOT as an adjunct to conventional treatment for IBD. Related research has shown that HBOT may exert its therapeutic effects by decreasing oxidative stress, inhibiting mucosal inflammation, promoting ulcer healing, influencing gut microbes, and reducing the incidence of IBD complications. This paper aims to provide a comprehensive review of experimental and clinical trials exploring HBOT as a supplement to IBD treatment strategies.


Oxygen partial pressure plays a crucial role in B16 melanoma cell survival by regulating autophagy and mitochondrial functions.

  • Yuqing Wang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

The oxygen partial pressure generally increases when cancerous cells become part of the blood vessels. The study was to investigate the influence of oxygen partial pressure on the apoptosis of B16 melanoma cells. Our results demonstrated that both short-term and long-term hypoxia/reoxygenation (H/R) treatment increased stress-induced intracellular reactive oxygen species (ROS). H/R treatment also increased apoptosis and autophagy in B16 cells. N-acetylcysteine (NAC), a ROS scavenger, can reduce ROS and aid survival. However, Bafilomycin A1, an autophagy inhibitor, can accelerate cell death. Thus, our work revealed that ROS and autophagy play critical roles in cellular H/R.


Establishment of a 13 genes-based molecular prediction score model to discriminate the neurotoxic potential of food relevant-chemicals.

  • Xiaolan Li‎ et al.
  • Toxicology letters‎
  • 2022‎

Although many neurotoxicity prediction studies of food additives have been developed, they are applicable in a qualitative way. We aimed to develop a novel prediction score that is described quantitatively and precisely. We examined cell viability, reactive oxygen species activity, intracellular calcium and RNA transcription level of potential prediction related genes to develop a high-throughput neurotoxicity test method in vitro to screen the neurotoxicity of hazardous factors in food using AI-based machine learning. We trained artificial intelligence models (random forest and neural network) to predict neurotoxicity precisely, establishing a universal classification assessment score (CA-Score) that relies on the expression status of only 13 of prediction related genes. The CA-Score system is almost universally applicable to food risk factors (p<0.05) in a manner independent of platform (microarray or RNA sequencing) by being compared with cut-off value 23.487 to judge whether it's neurotoxic or not. We finally validated our prediction with the external validation of CA-Score on neural precursor cells derived from embryonic stem cells. Therefore, we draw a conclusion that the AI-based machine learning including neural network and random forest is likely to provide a useful tool for large-scale screening of neurotoxicity in food risk factors.


Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS.

  • Bin Zhang‎ et al.
  • BMC veterinary research‎
  • 2021‎

Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified.


Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1.

  • Jianguo Li‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Reactive oxygen species can lead to functional alterations in lipids, proteins, and nucleic acids, and an accumulation of ROS (Reactive oxygen species) is considered to be one factor that contributes to neurodegenerative changes. An increase in ROS production occurs following irradiation. Neuronal tissue is susceptible to oxidative stress because of its high oxygen consumption and modest antioxidant defenses. As a polyphenolic compound, resveratrol is frequently used as an activator of Sirt1 (Sirtuin 1). The present study was designed to explore the radioprotective and antioxidant effect of resveratrol on Sirt1 expression and activity induced by radiation and to provide a new target for the development of radiation protection drugs. Our results demonstrate that resveratrol inhibits apoptosis induced by radiation via the activation of Sirt1. We demonstrated an increase in Sirt1 mRNA that was present on 21 days of resveratrol treatment following irradiation in a concentration-dependent manner. Such mRNA increase was accompanied by an increase of Sirt1 protein and activity. Resveratrol effectively antagonized oxidation induced by irradiation, supporting its cellular ROS-scavenging effect. These results provide evidence that the mitochondrial protection and the antioxidant effect of resveratrol contribute to metabolic activity. These data suggest that Sirt1 may play an important role to protect neurons from oxidative stress.


Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell.

  • Dan Huang‎ et al.
  • PloS one‎
  • 2011‎

Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs).


Effect of downregulated citrate synthase on oxidative phosphorylation signaling pathway in HEI-OC1 cells.

  • Xiaowen Xu‎ et al.
  • Proteome science‎
  • 2022‎

Citrate Synthase (Cs) gene mutation (locus ahL4) has been found to play an important role in progressive hearing loss of A/J mice. HEI-OC1 cells have been widely used as an in vitro system to study cellular and molecular mechanisms related to hearing lose. We previously reported the increased apoptosis and the accumulation of reactive oxygen species in shRNACs-1429 cells, a Cs low-expressed cell model from HEI-OCI. The details of the mechanism of ROS production and apoptosis mediated by the abnormal expression of Cs needed to research furtherly.


More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing.

  • Qianmin Ou‎ et al.
  • Journal of nanobiotechnology‎
  • 2021‎

During wound healing, the overproduction of reactive oxygen species (ROS) can break the cellular oxidant/antioxidant balance, which prolongs healing. The wound dressings targeting the mitigation of ROS will be of great advantages for the wound healing. puerarin (PUE) and ferulic acid (FA) are natural compounds derived from herbs that exhibit multiple pharmacological activities, such as antioxidant and anti-inflammatory effects. Polydopamine (PDA) is made from natural dopamine and shows excellent antioxidant function. Therefore, the combination of natural antioxidants into hydrogel dressing is a promising therapy for wound healing.


Serum containing Tongqiaohuoxue decoction suppresses glutamate-induced PC12 cell injury.

  • Ning Wang‎ et al.
  • Neural regeneration research‎
  • 2012‎

Glutamate application is an established method of inducing PC12 cell injury. PC12 cells were cultured with serum containing Tongqiaohuoxue decoction consisting of moschus, Carthamus tinctorius, Rhizoma chuanxiong, Semen pruni persicae, and Radix Paeoniae Rubra. After 24 hours of co-cultivation, glutamate (12.5 mM) was added to the culture medium. We found that serum containing Tongqiaohuoxue decoction prevented the increase in reactive oxygen species, and the decreases in superoxide dismutase and Na(+)-K(+)-ATPase activity, induced by glutamate. It also reduced the concentration of malondialdehyde, enhanced the mitochondrial transmembrane potential, inhibited the elevation of cellular calcium, and decreased phosphorylation of calmodulin-dependent protein kinase II. Thus, serum containing Tongqiaohuoxue decoction had protective effects on cell proliferation and membrane permeability in glutamate-injured PC12 cells.


Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases.

  • Hongbin Liu‎ et al.
  • Pharmacological research‎
  • 2021‎

NLRP3 inflammasome activation is implicated in the pathogenesis of a wide range of inflammatory diseases, but medications targeting the NLRP3 inflammasome are not available for clinical use. Here, we demonstrate that cryptotanshinone (CTS), a major component derived from the traditional medicinal herb Salvia miltiorrhiza Bunge, is a specific inhibitor for the NLRP3 inflammasome. Cryptotanshinone inhibits NLRP3 inflammasome activation in macrophages, but has no effects on AIM2 or NLRC4 inflammasome activation. Mechanistically, cryptotanshinone blocks Ca2+ signaling and the induction of mitochondrial reactive oxygen species (mtROS), which are important upstream signals of NLRP3 inflammasome activation. In vivo, cryptotanshinone attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3 inflammasome-mediated diseases such as endotoxemia syndrome and methionine- and choline-deficient-diet-induced nonalcoholic steatohepatitis (NASH). Our findings suggest that cryptotanshinone may be a promising therapeutic agent for the treatment of NLRP3 inflammasome-mediated diseases.


Surficial nano-deposition locoregionally yielding bactericidal super CAR-macrophages expedites periprosthetic osseointegration.

  • Ziyang Li‎ et al.
  • Science advances‎
  • 2023‎

Tracking and eradicating Staphylococcus aureus in the periprosthetic microenvironment are critical for preventing periprosthetic joint infection (PJI), yet effective strategies remain elusive. Here, we report an implant nanoparticle coating that locoregionally yields bactericidal super chimeric antigen receptor macrophages (CAR-MΦs) to prevent PJI. We demonstrate that the plasmid-laden nanoparticle from the coating can introduce S. aureus-targeted CAR genes and caspase-11 short hairpin RNA (CASP11 shRNA) into macrophage nuclei to generate super CAR-MΦs in mouse models. CASP11 shRNA allowed mitochondria to be recruited around phagosomes containing phagocytosed bacteria to deliver mitochondria-generated bactericidal reactive oxygen species. These super CAR-MΦs targeted and eradicated S. aureus and conferred robust bactericidal immunologic activity at the bone-implant interface. Furthermore, the coating biodegradability precisely matched the bone regeneration process, achieving satisfactory osteogenesis. Overall, our work establishes a locoregional treatment strategy for priming macrophage-specific bactericidal immunity with broad application in patients suffering from multidrug-resistant bacterial infection.


FoxO1 Overexpression Ameliorates TNF-α-Induced Oxidative Damage and Promotes Osteogenesis of Human Periodontal Ligament Stem Cells via Antioxidant Defense Activation.

  • Xiaojun Huang‎ et al.
  • Stem cells international‎
  • 2019‎

Periodontitis is a chronic disease that includes the pathologic loss of periodontal tissue and alveolar bone. The inflammatory environment in periodontitis impairs the osteogenic differentiation potential and depresses the regeneration capacity of human periodontal ligament stem cells (hPDLSCs). Since Forkhead box protein O1 (FoxO1) plays an important role in redox balance and bone formation, we investigated the role of FoxO1 in oxidative stress resistance and osteogenic differentiation in an inflammatory environment by overexpressing FoxO1 in hPDLSCs. First, we found that FoxO1 overexpression reduced reactive oxygen species (ROS) accumulation, decreased malondialdehyde (MDA) levels, and elevated antioxidant potential under oxidative condition. Next, the overexpression of FoxO1 protected hPDLSCs against oxidative damage, which involved stabilization of the mitochondrial membrane potential. Third, overexpressed FoxO1 promoted extracellular matrix (ECM) mineralization and increased the expression of the osteogenic markers Runx2 and SP7 in the inflammatory environment. These results indicated that FoxO1 overexpression in hPDLSCs has an anti-inflammatory effect, increases antioxidative capacity, and positively regulates osteogenesis in a mimicked inflammatory environment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: