Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Chronic pulmonary bacterial infection facilitates breast cancer lung metastasis by recruiting tumor-promoting MHCIIhi neutrophils.

  • Teng Ma‎ et al.
  • Signal transduction and targeted therapy‎
  • 2023‎

Breast cancer can metastasize to various organs, including the lungs. The immune microenvironment of the organs to be metastasized plays a crucial role in the metastasis of breast cancer. Infection with pathogens such as viruses and bacteria can alter the immune status of the lung. However, the effect of chronic inflammation caused by bacteria on the formation of a premetastatic niche within the lung is unclear, and the contribution of specific immune mediators to tumor metastasis also remains largely undetermined. Here, we used a mouse model revealing that chronic pulmonary bacterial infection augmented breast cancer lung metastasis by recruiting a distinct subtype of tumor-infiltrating MHCIIhi neutrophils into the lung, which exhibit cancer-promoting properties. Functionally, MHCIIhi neutrophils enhanced the lung metastasis of breast cancer in a cell-intrinsic manner. Furthermore, we identified CCL2 from lung tissues as an important environmental signal to recruit and maintain MHCIIhi neutrophils. Our findings clearly link bacterial-immune crosstalk to breast cancer lung metastasis and define MHCIIhi neutrophils as the principal mediator between chronic infection and tumor metastasis.


A fijiviral nonstructural protein triggers cell death in plant and bacterial cells via its transmembrane domain.

  • Zhengjie Yuan‎ et al.
  • Molecular plant pathology‎
  • 2023‎

Southern rice black-streaked dwarf virus (SRBSDV; Fijivirus, Reoviridae) has become a threat to cereal production in East Asia in recent years. Our previous cytopathologic studies have suggested that SRBSDV induces a process resembling programmed cell death in infected tissues that results in distinctive growth abnormalities. The viral product responsible for the cell death, however, remains unknown. Here P9-2 protein, but not its RNA, was shown to induce cell death in Escherichia coli and plant cells when expressed either locally with a transient expression vector or systemically using a heterologous virus. Both computer prediction and fluorescent assays indicated that the viral nonstructural protein was targeted to the plasma membrane (PM) and further modification of its subcellular localization abolished its ability to induce cell death, indicating that its PM localization was required for the cell death induction. P9-2 was predicted to harbour two transmembrane helices within its central hydrophobic domain. A series of mutation assays further showed that its central transmembrane hydrophobic domain was crucial for cell death induction and that its conserved F90, Y101, and L103 amino acid residues could play synergistic roles in maintaining its ability to induce cell death. Its homologues in other fijiviruses also induced cell death in plant and bacterial cells, implying that the fijiviral nonstructural protein may trigger cell death by targeting conserved cellular factors or via a highly conserved mechanism.


Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome.

  • Ziwei Song‎ et al.
  • Microbiome‎
  • 2019‎

Bile salt hydrolase plays an important role in bile acid-mediated signaling pathways, which regulate lipid absorption, glucose metabolism, and energy homeostasis. Several reports suggest that changes in the composition of bile acids are found in many diseases caused by dysbacteriosis.


Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies.

  • Karsten Henne‎ et al.
  • BMC evolutionary biology‎
  • 2014‎

The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations.


RNA-seq reveals the critical role of OtpR in regulating Brucella melitensis metabolism and virulence under acidic stress.

  • Wenxiao Liu‎ et al.
  • Scientific reports‎
  • 2015‎

The response regulator OtpR is critical for the growth, morphology and virulence of Brucella melitensis. Compared to its wild type strain 16 M, B. melitensis 16 MΔotpR mutant has decreased tolerance to acid stress. To analyze the genes regulated by OtpR under acid stress, we performed RNA-seq whole transcriptome analysis of 16 MΔotpR and 16 M. In total, 501 differentially expressed genes were identified, including 390 down-regulated and 111 up-regulated genes. Among these genes, 209 were associated with bacterial metabolism, including 54 genes involving carbohydrate metabolism, 13 genes associated with nitrogen metabolism, and seven genes associated with iron metabolism. The 16 MΔotpR also decreased capacity to utilize different carbon sources and to tolerate iron limitation in culture experiments. Notably, OtpR regulated many Brucella virulence factors essential for B. melitensis intracellular survival. For instance, the virB operon encoding type IV secretion system was significantly down-regulated, and 36 known transcriptional regulators (e.g., vjbR and blxR) were differentially expressed in 16 MΔotpR. Selected RNA-seq results were experimentally confirmed by RT-PCR and RT-qPCR. Overall, these results deciphered differential phenomena associated with virulence, environmental stresses and cell morphology in 16 MΔotpR and 16 M, which provided important information for understanding the detailed OtpR-regulated interaction networks and Brucella pathogenesis.


Alterations in Intestinal Microbiota Composition in Mice Treated With Vitamin D3 or Cathelicidin.

  • Yu Jiang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Gut microbiota is a complex aggregation of microbial organisms, which offers diverse protective benefits to the host. Dysbiosis of intestinal microbiota is frequently associated with many diseases. Vitamin D3 (VD), which was originally associated with bone health, also possesses antimicrobial activities and can act through antimicrobial peptide. Cathelicidin is a type of antimicrobial peptide in host to maintain the balance of gut microbiome. Our current study sought to evaluate the protective effect of VD and cathelicidin in mice intestines by administration of VD or mCRAMP-encoding L. lactis. We herein provided a comprehensive profile of the impact of VD and mCRAMP on gut microbiota using 16S rRNA sequencing, followed by bioinformatics and statistical analysis. Our results revealed an increased richness of bacterial community in mice intestines due to VD administration. Moreover, we showed a beneficial effect of VD and mCRAMP by enhancing the colonization of bacterial taxa that are associated with protective effects to the host but repressing the propagation of bacterial taxa that are associated with harmful effects to the host. Various metabolic pathways related to amino acid and lipid metabolism were affected in this process. We further established a bacterial panel as a reliable biomarker to evaluate the efficacy of remodeling the mice gut microbiota by VD and mCRAMP administration. The uncovered effects will deepen the comprehension about the antibacterial mechanisms of VD and mCRAMP and provide new insights for therapeutic implication of them.


Neurodevelopmental Outcomes and Gut Bifidobacteria in Term Infants Fed an Infant Formula Containing High sn-2 Palmitate: A Cluster Randomized Clinical Trial.

  • Wei Wu‎ et al.
  • Nutrients‎
  • 2021‎

A few studies suggested high stereo-specifically numbered (sn)-2 palmitate in a formula might favor the gut Bifidobacteria of infants. The initial colonization and subsequent development of gut microbiota in early life might be associated with development and later life functions of the central nervous system via the microbiota-gut-brain axis, such as children with autism. This study aims to assess the hypothesized effect of increasing the amount of palmitic acid esterified in the sn-2 position in infant formula on neurodevelopment in healthy full-term infants and to explore the association of this effect with the altered gut Bifidobacteria. One hundred and ninety-nine infants were enrolled in this cluster randomized clinical trial: 66 breast-fed (BF group) and 133 formula-fed infants who were clustered and randomly assigned to receive formula containing high sn-2 palmitate (sn-2 group, n = 66) or low sn-2 palmitate (control group, n = 67), where 46.3% and 10.3% of the palmitic acid (PA) was sn-2-palmitate, respectively. Infants' neurodevelopmental outcomes were measured by the Ages and Stages Questionnaire, third edition (ASQ-3). Stool samples were collected for the analysis of Bifidobacteria (Trial registration number: ChiCTR1800014479). At week 16, the risk of scoring close to the threshold for fine motor skills (reference: scoring above the typical development threshold) was significantly lower in the sn-2 group than the control group after adjustment for the maternal education level (p = 0.036) but did not differ significantly versus the BF group (p = 0.513). At week 16 and week 24, the sn-2 group (week 16: 15.7% and week 24: 15.6%) had a significantly higher relative abundance of fecal Bifidobacteria than the control group (week 16: 6.6%, p = 0.001 and week 24:11.2%, p = 0.028) and did not differ from the BF group (week 16: 14.4%, p = 0.674 and week 24: 14.9%, p = 0.749). At week 16, a higher relative abundance of Bifidobacteria was associated with the decreased odds of only one domain scoring close to the threshold in the formula-fed infants group (odds ratio (OR), 95% confidence interval (CI): 0.947 (0.901-0.996)). Elevating the sn-2 palmitate level in the formula improved infants' development of fine motor skills, and the beneficial effects of high sn-2 palmitate on infant neurodevelopment was associated with the increased gut Bifidobacteria level.


A new coumarin compound DCH combats methicillin-resistant Staphylococcus aureus biofilm by targeting arginine repressor.

  • Di Qu‎ et al.
  • Science advances‎
  • 2020‎

Staphylococcus aureus infection is difficult to eradicate because of biofilm formation and antibiotic resistance. The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection necessitates the development of a new agent against bacterial biofilms. We report a new coumarin compound, termed DCH, that effectively combats MRSA in vitro and in vivo and exhibits potent antibiofilm activity without detectable resistance. Cellular proteome analysis suggests that the molecular mechanism of action of DCH involves the arginine catabolic pathway. Using molecular docking and binding affinity assays of DCH, and comparison of the properties of wild-type and ArgR-deficient MRSA strains, we demonstrate that the arginine repressor ArgR, an essential regulator of the arginine catabolic pathway, is the target of DCH. These findings indicate that DCH is a promising lead compound and validate bacterial ArgR as a potential target in the development of new drugs against MRSA biofilms.


Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants.

  • Marcus H Y Leung‎ et al.
  • Microbiome‎
  • 2020‎

Polycyclic aromatic hydrocarbons (PAHs) are of environmental and public health concerns and contribute to adverse skin attributes such as premature skin aging and pigmentary disorder. However, little information is available on the potential roles of chronic urban PAH pollutant exposure on the cutaneous microbiota. Given the roles of the skin microbiota have on healthy and undesirable skin phenotypes and the relationships between PAHs and skin properties, we hypothesize that exposure of PAHs may be associated with changes in the cutaneous microbiota. In this study, the skin microbiota of over two hundred Chinese individuals from two cities in China with varying exposure levels of PAHs were characterized by bacterial and fungal amplicon and shotgun metagenomics sequencing.


Reprograming of transcriptional profile of colonic organoids from patients with high blood pressure by minocycline.

  • Jing Li‎ et al.
  • American heart journal plus : cardiology research and practice‎
  • 2023‎

Minocycline, an anti-inflammatory antibiotic drug, rebalances impaired gut microbiota, attenuates neuroinflammation and lowers high blood pressure in animal models of hypertension and in hypertensive patients. Our objective in this study was to investigate if antihypertensive effects of minocycline involve the expression of gut epithelial genes relevant to blood pressure homeostasis using human colonic 3-dimensional organoid culture and high-throughput RNA sequencing. The data demonstrates that minocycline could restore impaired expression of functional genes linked to viral and bacterial immunity, inflammation, protein trafficking and autophagy in human hypertensive organoids.


Saikosaponin A-Induced Gut Microbiota Changes Attenuate Severe Acute Pancreatitis through the Activation of Keap1/Nrf2-ARE Antioxidant Signaling.

  • Jing Li‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Severe acute pancreatitis (SAP) is a serious and life-threatening disease associated with multiple organ failure and a high mortality rate and is accompanied by distinct oxidative stress and inflammatory responses. Saikosaponin A has strong antioxidant properties and can affect the composition of gut microbiota. We sought to determine the effects of Saikosaponin A interventions on SAP by investigating the changes of gut microbiota and related antioxidant signaling.


Kidney microbiota dysbiosis contributes to the development of hypertension.

  • Xin-Yu Liu‎ et al.
  • Gut microbes‎
  • 2022‎

Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies.


2 Hydroxybutyric Acid-Producing Bacteria in Gut Microbiome and Fusobacterium nucleatum Regulates 2 Hydroxybutyric Acid Level In Vivo.

  • Fujian Qin‎ et al.
  • Metabolites‎
  • 2023‎

2-hydroxybutyric acid (2HB) serves as an important regulatory factor in a variety of diseases. The circulating level of 2HB in serum is significantly higher in multiple diseases, such as cancer and type 2 diabetes (T2D). However, there is currently no systematic study on 2HB-producing bacteria that demonstrates whether gut bacteria contribute to the circulating 2HB pool. To address this question, we used BLASTP to reveal the taxonomic profiling of 2HB-producing bacteria in the human microbiome, which are mainly distributed in the phylum Proteobacteria and Firmicutes. In vitro experiments showed that most gut bacteria (21/32) have at least one path to produce 2HB, which includes Aspartic acid, methionine, threonine, and 2-aminobutyric acid. Particularly, Fusobacterium nucleatum has the strongest ability to synthesize 2HB, which is sufficient to alter colon 2HB concentration in mice. Nevertheless, neither antibiotic (ABX) nor Fusobacterium nucleatum gavage significantly affected mouse serum 2HB levels during the time course of this study. Taken together, our study presents the profiles of 2HB-producing bacteria and demonstrates that gut microbiota was a major contributor to 2HB concentration in the intestinal lumen but a relatively minor contributor to serum 2HB concentration.


Prevalence of phase variable epigenetic invertons among host-associated bacteria.

  • Xueting Huang‎ et al.
  • Nucleic acids research‎
  • 2020‎

Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.


Isolation and characterization of a podovirus infecting the opportunist pathogen Vibrio alginolyticus and Vibrio parahaemolyticus.

  • Fei Li‎ et al.
  • Virus research‎
  • 2021‎

Bacterial infections have a negative impact on both animal husbandry industry and medicine, and increasing bacterial drug resistance exacerbates this adverse impact. Phages show promise as an alternative to drugs against drug-resistant bacteria. In this study, a novel virulent bacteriophage (phage) vB_ValP_IME234 against Vibrio alginolyticus and Vibrio parahaemolyticus was isolated from freshwater in Beijing, China. Phage vB_ValP_IME234 had an isometric head (59 nm in diameter) and a short tail (10 nm long), belonging to Podoviridae family. Its complete genome is liner double-stranded DNA (dsDNA) with a GC content of 41.6% while encoding 61 putative proteins. Three transfer RNA (tRNA) and no lysogenic gene was detected. vB_ValP_IME234 had a polyvalent infectivity, a burst of 390 PFU/cell, and is stable under different temperatures (4 °C to 50 °C) and pH (6.0 to 10.0) values. Host range test showed that vB_ValP_IME234 has the ability to infect seven strains of Vibrio in total. Phylogenetic analyses based on terminase and capsid suggested that this phage had a close relationship with Vibrio phages. These results indicate that vB_ValP_IME234 could be used as a potential biocontrol agent against V. alginolyticus strains.


Alterations of gut viral signals in atrial fibrillation: complex linkage with gut bacteriome.

  • Kun Zuo‎ et al.
  • Aging‎
  • 2022‎

The gut microbiota has a known complex association with atrial fibrillation (AF) progression, but the association of gut viruses with AF is undefined. Metagenomic data in a cohort of 50 AF patients and 50 matched controls were examined to profile the gut viral signals and determine their associations with intestinal bacteria and the AF phenotype. The gut viral alterations were examined, and the marked elevation of viral diversity, including increased Simpson, Shannon, and Pielou index, was revealed in AF patients. The specific alteration of the intestinal viral population, such as overgrowth of Streptococcus virus DT1 and Pseudomonas phage, as well as imbalanced gut viral function, dominated by integral component of the membrane, and metal ion binding were detected in AF patients. Moreover, regarding co-occurrence networks connecting viruses and bacterial organisms, increasingly disordered virus-bacteria linkages were seen in AF cases with severe AF progression. Notably, the associations of Synechococcus phage S-SM1 and Cronobacter phage CR5 with bacterial species were very tight in control individuals but markedly dampened in AF cases. Furthermore, the viral score built by the selected discriminative taxa between AF cases with or without recurrence after ablation was still significantly associated with recurrence (HR = 2.959, P = 0.0085), with a survival AUC of 0.878. We demonstrated for the first time that gut viral signatures are associated with AF, and suppressed viral-bacterial associations in AF suggest the gut virus might participate in AF progression, which has a potential value in predicting ablation outcomes.


Host-microbiota interaction helps to explain the bottom-up effects of climate change on a small rodent species.

  • Guoliang Li‎ et al.
  • The ISME journal‎
  • 2020‎

The population cycles of small rodents have puzzled biologists for centuries. There is a growing recognition of the cascading effects of climate change on the population dynamics of rodents. However, the ultimate cause for the bottom-up effects of precipitation is poorly understood, from a microbial perspective. Here, we conducted a precipitation manipulation experiment in the field, and three feeding trials with controlled diets in the laboratory. We found precipitation supplementation facilitated the recovery of a perennial rhizomatous grass (Leymus chinensis) species, which altered the diet composition and increase the intake of fructose and fructooligosaccharides for Brandt's vole. Lab results showed that this nutrient shift was accompanied by the modulation of gut microbiota composition and functional pathways (especially for the degradation or biosynthesis of L-histidine). Particularly, the relative abundance of Eubacterium hallii was consistently increased after feeding voles with more L. chinensis, fructose or fructooligosaccharide. These modulations ultimately increased the production of short chain fatty acids (SCFAs) and boosted the growth of vole. This study provides evidence that the precipitation pulses cascades through the plant community to affect rodent gut microbiome. Our results highlight the importance of considering host-microbiota interaction when investigating rodent population responses to climate change.


Small-molecule inhibition of TLR8 through stabilization of its resting state.

  • Shuting Zhang‎ et al.
  • Nature chemical biology‎
  • 2018‎

Endosomal Toll-like receptors (TLR3, TLR7, TLR8, and TLR9) are highly analogous sensors for various viral or bacterial RNA and DNA molecular patterns. Nonetheless, few small molecules can selectively modulate these TLRs. In this manuscript, we identified the first human TLR8-specific small-molecule antagonists via a novel inhibition mechanism. Crystal structures of two distinct TLR8-ligand complexes validated a unique binding site on the protein-protein interface of the TLR8 homodimer. Upon binding to this new site, the small-molecule ligands stabilize the preformed TLR8 dimer in its resting state, preventing activation. As a proof of concept of their therapeutic potential, we have demonstrated that these drug-like inhibitors are able to suppress TLR8-mediated proinflammatory signaling in various cell lines, human primary cells, and patient specimens. These results not only suggest a novel strategy for TLR inhibitor design, but also shed critical mechanistic insight into these clinically important immune receptors.


Transcriptome-wide identification of indole glucosinolate dependent flg22-response genes in Arabidopsis.

  • Jianxin Zhou‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Indole glucosinolates are known to play essential and diverse roles in Arabidopsis immunity to pathogens. However, a complete understanding of the function of these compounds in plant immunity remains unclear. In this study, we investigated the transcriptome profile in loss-of-function mutant of MYB51, the key transcription factor that controls the biosynthesis of indole glucosinolates. Upon treatment with flg22 (a 22-amino acid peptide derived from bacterial flagellin), the genes that responded in a MYB51-dependent manner were analyzed. The results suggested that MYB51 was possibly implicated in most resistance processes, including pathogen recognition, signal transduction and PR protein activation. Of note, several genes in the ethylene pathway and the WRKY family, including WRKY33, were induced by flg22 in a MYB51-dependent manner. WRKY33 and ethylene were demonstrated to be crucial regulators in plant immunity defense and are functionally upstream of MYB51 during MAMP triggered immunity (MTI). This result suggested a "positive feedback loop" between MYB51 and its upstream regulators.


Rural environment reduces allergic inflammation by modulating the gut microbiota.

  • Zhaowei Yang‎ et al.
  • Gut microbes‎
  • 2022‎

Rural environments and microbiota are linked to a reduction in the prevalence of allergies. However, the mechanism underlying the reduced allergies modulated by rural residency is unclear. Here, we assessed gut bacterial composition and metagenomics in urban and rural children in the EuroPrevall-INCO cohort. Airborne dusts, including mattress and rural henhouse dusts, were profiled for bacterial and fungal composition by amplicon sequencing. Mice were repeatedly exposed to intranasal dust extracts and evaluated for their effects on ovalbumin (OVA)-induced allergic airway inflammation, and gut microbiota restoration was validated by fecal microbiota transplant (FMT) from dust-exposed donor mice. We found that rural children had fewer allergies and unique gut microbiota with fewer Bacteroides and more Prevotella. Indoor dusts in rural environments harbored higher endotoxin level and diversity of bacteria and fungi, whereas indoor urban dusts were enriched with Aspergillus and contained elevated pathogenic bacteria. Intranasal administration of rural dusts before OVA sensitization reduced respiratory eosinophils and blood IgE level in mice and also led to a recovery of gut bacterial diversity and Ruminiclostridium in the mouse model. FMT restored the protective effect by reducing OVA-induced lung eosinophils in recipient mice. Together, these results support a cause-effect relationship between exposure to dust microbiota and allergy susceptibility in children and mice. Specifically, rural environmental exposure modulated the gut microbiota, which was essential in reducing allergy in children from Southern China. Our findings support the notion that the modulation of gut microbiota by exposure to rural indoor dust may improve allergy prevention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: