2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A fijiviral nonstructural protein triggers cell death in plant and bacterial cells via its transmembrane domain.

Molecular plant pathology | 2023

Southern rice black-streaked dwarf virus (SRBSDV; Fijivirus, Reoviridae) has become a threat to cereal production in East Asia in recent years. Our previous cytopathologic studies have suggested that SRBSDV induces a process resembling programmed cell death in infected tissues that results in distinctive growth abnormalities. The viral product responsible for the cell death, however, remains unknown. Here P9-2 protein, but not its RNA, was shown to induce cell death in Escherichia coli and plant cells when expressed either locally with a transient expression vector or systemically using a heterologous virus. Both computer prediction and fluorescent assays indicated that the viral nonstructural protein was targeted to the plasma membrane (PM) and further modification of its subcellular localization abolished its ability to induce cell death, indicating that its PM localization was required for the cell death induction. P9-2 was predicted to harbour two transmembrane helices within its central hydrophobic domain. A series of mutation assays further showed that its central transmembrane hydrophobic domain was crucial for cell death induction and that its conserved F90, Y101, and L103 amino acid residues could play synergistic roles in maintaining its ability to induce cell death. Its homologues in other fijiviruses also induced cell death in plant and bacterial cells, implying that the fijiviral nonstructural protein may trigger cell death by targeting conserved cellular factors or via a highly conserved mechanism.

Pubmed ID: 36305370 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


TMHMM Server (tool)

RRID:SCR_014935

Web application for the prediction of transmembrane helices in proteins using Hidden Markov Models. FASTA formatted sequences can be uploaded via file or copy-paste, and output can be formatted as extensive with graphics, extensive without graphics, or one line per protein. Submissions are limited to 10,000 sequences and 4,000,000 amino acids - each sequence is limited to no more than 8,000 amino acids.

View all literature mentions

Phobius (tool)

RRID:SCR_015643

Web application for combined transmembrane topology and signal peptide prediction. Used for whole genome annotation of signal peptides and transmembrane regions. Predictor is based on hidden Markov model (HMM) that models different sequence regions of signal peptide and different regions of transmembrane protein in series of interconnected states.

View all literature mentions