Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice.

  • Anhui Yao‎ et al.
  • Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics‎
  • 2014‎

The inflammatory response following spinal cord injury (SCI) involves the activation of resident microglia and the infiltration of macrophages. Macrophages and microglia can be polarized into the classically activated proinflammatory M1 phenotype or the alternatively activated anti-inflammatory M2 phenotype. Programmed cell death 1 (PD-1) is a critical immune inhibitory receptor involved in innate and adaptive immune responses. However, whether PD-1 is involved in the modulation of macrophage/microglial polarization is unknown. In this study, the mRNA levels of pd1 gradually increased after SCI, and PD-1 protein was found in macrophages/microglia in injured spinal cord sections. PD-1 knockout (KO) mice showed poor locomotor recovery after spinal cord crushing compared with wild-type mice. M1-type macrophages/microglia accumulated in greater numbers in the injured spinal cord of PD-1-KO mice. Under polarized stimulation, induced expression of PD-1 occurred in cultured macrophages and microglia. PD-1 suppressed M1 polarization by reducing the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and promoted M2 polarization by increasing STAT6 phosphorylation. In PD-1-KO mice, the M1 response was enhanced via the activation of STAT1 and nuclear factor-kappa B. Furthermore, PD-1 played various roles in phagocytosis in macrophages and microglia. Therefore, our results suggest that PD-1 signaling plays an important role in the regulation of macrophage/microglial polarization. Thus, deregulated PD-1 signaling may induce the polarization of macrophages/microglia toward the M1 phenotype. Overall, our results provide new insights into the modulatory mechanisms of macrophage/microglial polarization, thereby possibly facilitating the development of new therapies for SCI via the regulation of macrophage/microglial polarization through PD-1 signaling.


PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice.

  • Taku Okazaki‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

Stimulatory and inhibitory co-receptors play fundamental roles in the regulation of the immune system. We describe a new mouse model of spontaneous autoimmune disease. Activation-induced cytidine deaminase-linked autoimmunity (aida) mice harbor a loss-of-function mutation in the gene encoding lymphocyte activation gene 3 (LAG-3), an inhibitory co-receptor. Although LAG-3 deficiency alone did not induce autoimmunity in nonautoimmune-prone mouse strains, it induced lethal myocarditis in BALB/c mice deficient for the gene encoding the inhibitory co-receptor programmed cell death 1 (PD-1). In addition, LAG-3 deficiency alone accelerated type 1 diabetes mellitus in nonobese diabetic mice. These results demonstrate that LAG-3 acts synergistically with PD-1 and/or other immunoregulatory genes to prevent autoimmunity in mice.


Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer.

  • Bo Cheng‎ et al.
  • Cancer communications (London, England)‎
  • 2022‎

Second-generation programmed cell death-protein 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors, such as bintrafusp alfa (M7824), SHR-1701, and YM101, have been developed to simultaneously block PD-1/PD-L1 and transforming growth factor-beta/transforming growth factor-beta receptor (TGF-β/TGF-βR). Consequently, it is necessary to identify predictive factors of lung cancer patients who are not only resistant to PD-1/PD-L1 inhibitors but also sensitive to bifunctional drugs. The purpose of this study was to search for such predictors.


Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy.

  • Kaiyuan Wang‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Currently, the effect of inflammation on tumorigenesis and progression has been widely noted. As a member of pattern recognition receptors, toll-like receptor 4 (TLR4) plays a pivotal role in tumor immune microenvironment and has been increasingly investigated. In the present study, we evaluated TLR4 expression and its association with programmed cell death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) tissues and assessed the predicting value of TLR4 on postoperative outcome. A total of 126 NSCLC patients receiving complete pulmonary resection and systematic lymph node dissection between April 2008 and August 2014 were enrolled. All the patients had integrated clinicopathological records and follow-up data. TLR4 and PD-L1 expression on NSCLC samples were determined by immunohistochemistry, and serum soluble TLR4 (sTLR4) levels were measured by enzyme-linked immunosorbent assay. Results showed that TLR4 expression level in cancer tissue was significantly higher than that in para-cancer tissue. Elevated TLR4 expression was significantly associated with histological type (adenocarcinoma higher than squamous cell carcinoma, P = 0.041), increased clinical TNM stage (P < 0.001), and presence of lymphatic invasion (P < 0.001). Besides, TLR4 expression level in cancer samples was inversely correlated with serum sTLR4 level in patients with early-stage NSCLC (r = -0.485, P = 0.003). TLR4 expression level was also positively correlated with the PD-L1 expression level (r = 0.545, P < 0.0001). Multivariate analysis showed that expression level of TLR4 was an independent prognostic factor and TLR4 overexpression indicated a poor overall survival and disease-free survival. Taken together, we conclude that expression of TLR4 in lung cancer is associated with PD-L1 and could predict the outcome of patients with NSCLC receiving pulmonary resection for cancer.


Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b-/-Pdcd1-/- mice.

  • Taku Okazaki‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Because most autoimmune diseases are polygenic, analysis of the synergistic involvement of various immune regulators is essential for a complete understanding of the molecular pathology of these diseases. We report the regulation of autoimmune diseases by epistatic effects of two immunoinhibitory receptors, low affinity type IIb Fc receptor for IgG (FcgammaRIIB) and programmed cell death 1 (PD-1). Approximately one third of the BALB/c-Fcgr2b(-/-)Pdcd1(-/-) mice developed autoimmune hydronephrosis, which is not observed in either BALB/c-Fcgr2b(-/-) or BALB/c-Pdcd1(-/-) mice. Hydronephrotic mice produced autoantibodies (autoAbs) against urothelial antigens, including uroplakin IIIa, and these antibodies were deposited on the urothelial cells of the urinary bladder. In addition, approximately 15% of the BALB/c-Fcgr2b(-/-)Pdcd1(-/-) mice produced antinuclear autoAbs. In contrast, the frequency of the autoimmune cardiomyopathy and the production of anti-parietal cell autoAb, which were observed in BALB/c-Pdcd1(-/-) mice, were not affected by the additional FcgammaRIIB deficiency. These observations suggest cross talk between two immunoinhibitory receptors, FcgammaRIIB and PD-1, on the regulation of autoimmune diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: