Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,518 papers

Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer.

  • Zehong Chen‎ et al.
  • Cancer science‎
  • 2018‎

Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1+ T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention.


Structure and interactions of the human programmed cell death 1 receptor.

  • Xiaoxiao Cheng‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.


Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction.

  • Damian Muszak‎ et al.
  • Journal of medicinal chemistry‎
  • 2021‎

We describe a new class of potent PD-L1/PD-1 inhibitors based on a terphenyl scaffold that is derived from the rigidified biphenyl-inspired structure. Using in silico docking, we designed and then experimentally demonstrated the effectiveness of the terphenyl-based scaffolds in inhibiting PD-1/PD-L1 complex formation using various biophysical and biochemical techniques. We also present a high-resolution structure of the complex of PD-L1 with one of our most potent inhibitors to identify key PD-L1/inhibitor interactions at the molecular level. In addition, we show the efficacy of our most potent inhibitors in activating the antitumor response using primary human immune cells from healthy donors.


Sea urchin histamine receptor 1 regulates programmed cell death in larval Strongylocentrotus purpuratus.

  • Keegan Lutek‎ et al.
  • Scientific reports‎
  • 2018‎

Settlement is a rapid process in many marine invertebrate species, transitioning a planktonic larva into a benthic juvenile. In indirectly developing sea urchins, this ecological transition correlates with a morphological, developmental and physiological transition (metamorphosis) during which apoptosis is essential for the resorption and remodelling of larval and juvenile structures. While settlement is initiated by environmental cues (i.e. habitat-specific or benthic substrate cues), metamorphosis is regulated by developmental endocrine signals, such as histamine (HA), thyroid hormones (THs) and nitric oxide (NO). In the purple sea urchin, Strongylocentrotus purpuratus, we found that suH1R mRNA levels increase during larval development and peak during metamorphic competence. SuH1R positive cell clusters are prominently visible in the mouth region of sea urchin larvae, but the protein appears to be expressed at low levels throughout the larval arms and epidermis. SuH1R knock-down experiments in larval stages show that the function of suH1R is in inhibiting apoptosis. Our results therefore suggest that suH1R is regulating the metamorphic transition by inhibiting apoptosis. These results provide new insights into metamorphic mechanisms and have implications for our understanding of settlement and metamorphosis in the marine environment.


Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells.

  • Jong Hoon Kim‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2016‎

Psoriasis is one of the most common chronic inflammatory diseases of the skin. Recently, IL-17-producing T cells have been shown to play a critical role in psoriatic inflammation. Programmed cell death 1 (PD-1) is a coinhibitory receptor expressed on T cells in various chronic inflammatory diseases; however, the expression and function of PD-1 during psoriatic inflammation have not previously been characterized.


Discovery of peptide inhibitors targeting human programmed death 1 (PD-1) receptor.

  • Qiao Li‎ et al.
  • Oncotarget‎
  • 2016‎

Blocking the interaction of human programmed death 1 (hPD-1) and its ligand hPD-L1 has been a promising immunotherapy in cancer treatment. In this paper, using a computational de novo peptide design method, we designed several hPD-1 binding peptides. The most potent peptide Ar5Y_4 showed a KD value of 1.38 ± 0.39 μM, comparable to the binding affinity of the cognate hPD-L1. A Surface Plasmon Resonance (SPR) competitive binding assay result indicated that Ar5Y_4 could inhibit the interaction of hPD-1/hPD-L1. Moreover, Ar5Y_4 could restore the function of Jurkat T cells which had been suppressed by stimulated HCT116 cells. Peptides described in this paper provide promising biologic candidates for cancer immunotherapy or diagnostics.


Use of Programmed Death Receptor-1 and/or Programmed Death Ligand 1 Inhibitors for the Treatment of Brain Metastasis of Lung Cancer.

  • Shiqiang Wang‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

The central nervous system (CNS) is regarded as an immune privileged environment; however, changes in the neuroimmunology paradigm have led to an increased interest in systematic immunotherapy in lung cancer therapy. The presence of the lymphatic system in the CNS as well as the physiological and biochemical changes in the blood-brain barrier in the tumor microenvironment suggests that immunocytes are fully capable of entering and exiting the CNS. Emerging clinical data suggest that inhibitors of programmed death receptor-1/programmed death ligand 1 (PD-1/PD-L1) can stimulate surrounding T cells and thus have antitumor effects in the CNS. For example, PD-1 antibody (pembrolizumab) monotherapy has displayed a 20-30% encephalic response rate in patients with brain metastases from malignant melanoma or non-small cell lung cancer. Combined application of nivolumab and ipilimumab anti-PD-1 and anti-cytotoxic T-lymphocyte-associated protein 4 showed an encephalic response rate of 55% in patients with brain metastases of melanoma. Further evidence is required to verify these response rates and identify the mechanisms of curative effects and drug tolerance. While regional treatments such as whole-brain radiosurgery, stereotactic radiosurgery, and brain surgery remain the mainstream, PD-1/PD-L1 inhibitors display potential decreased neurotoxic effects. To date, five drugs have been approved for use in patients with encephalic metastases of lung carcinoma: the anti-PD-1 drugs, pembrolizumab and nivolumab, and the anti-PD-L1 agents, atezolizumab, durvalumab, and avelumab. In recent years, clinical trials of inhibitors in combination with other drugs to treat brain metastasis have also emerged. This review summarizes the biological principles of PD-1/PD-L1 immunotherapy for brain metastasis of lung cancer, as well as ongoing clinical trials to explore unmet needs.


Programmed cell death of embryonic motoneurons triggered through the Fas death receptor.

  • C Raoul‎ et al.
  • The Journal of cell biology‎
  • 1999‎

About 50% of spinal motoneurons undergo programmed cell death (PCD) after target contact, but little is known about how this process is initiated. Embryonic motoneurons coexpress the death receptor Fas and its ligand FasL at the stage at which PCD is about to begin. In the absence of trophic factors, many motoneurons die in culture within 2 d. Most (75%) of these were saved by Fas-Fc receptor body, which blocks interactions between Fas and FasL, or by the caspase-8 inhibitor tetrapeptide IETD. Therefore, activation of Fas by endogenous FasL underlies cell death induced by trophic deprivation. In the presence of neurotrophic factors, exogenous Fas activators such as soluble FasL or anti-Fas antibodies triggered PCD of 40-50% of purified motoneurons over the following 3-5 d; this treatment led to activation of caspase-3, and was blocked by IETD. Sensitivity to Fas activation is regulated: motoneurons cultured for 3 d with neurotrophic factors became completely resistant. Levels of Fas expressed by motoneurons varied little, but FasL was upregulated in the absence of neurotrophic factors. Motoneurons resistant to Fas activation expressed high levels of FLICE-inhibitory protein (FLIP), an endogenous inhibitor of caspase-8 activation. Our results suggest that Fas can act as a driving force for motoneuron PCD, and raise the possibility that active triggering of PCD may contribute to motoneuron loss during normal development and/or in pathological situations.


Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia.

  • Lisa Christiansson‎ et al.
  • PloS one‎
  • 2013‎

Immunotherapy (eg interferon α) in combination with tyrosine kinase inhibitors is currently in clinical trials for treatment of chronic myeloid leukemia (CML). Cancer patients commonly have problems with so called immune escape mechanisms that may hamper immunotherapy. Hence, to study the function of the immune system in CML is of interest. In the present paper we have identified immune escape mechanisms in CML with focus on those that directly hamper T cells since these cells are important to control tumor progression. CML patient samples were investigated for the presence of myeloid-derived suppressor cells (MDSCs), expression of programmed death receptor ligand 1/programmed death receptor 1 (PD-L1/PD-1), arginase 1 and soluble CD25. MDSC levels were increased in samples from Sokal high risk patients (p<0.05) and the cells were present on both CD34 negative and CD34 positive cell populations. Furthermore, expression of the MDSC-associated molecule arginase 1, known to inhibit T cells, was increased in the patients (p = 0.0079). Myeloid cells upregulated PD-L1 (p<0.05) and the receptor PD-1 was present on T cells. However, PD-L1 blockade did not increase T cell proliferation but upregulated IL-2 secretion. Finally, soluble CD25 was increased in high risk patients (p<0.0001). In conclusion T cells in CML patients may be under the control of different immune escape mechanisms that could hamper the use of immunotherapy in these patients. These escape mechanisms should be monitored in trials to understand their importance and how to overcome the immune suppression.


Extracellular Vesicles Transfer the Receptor Programmed Death-1 in Rheumatoid Arthritis.

  • Stinne R Greisen‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Extracellular vesicles (EVs) have been recognized as route of communication in the microenvironment. They transfer proteins and microRNAs (miRNAs) between cells, and possess immunoregulatory properties. However, their role in immune-mediated diseases remains to be elucidated. We hypothesized a role for EVs in the rheumatoid arthritis (RA) joint, potentially involving the development of T cell exhaustion and transfer of the co-inhibitory receptor programmed death 1 (PD-1).


Blocking the inhibitory receptor programmed cell death 1 prevents allergic immune response and anaphylaxis in mice.

  • Jyoti K Lama‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2022‎

Food allergy and acute anaphylaxis can be life-threatening. While T follicular helper (Tfh) cells play a pivotal role in the allergic immune responses, the immunologic mechanisms that regulate the production of antibodies (Abs) that mediate anaphylaxis are not fully understood.


Survival Outcomes and Safety of Programmed Cell Death/Programmed Cell Death Ligand 1 Inhibitors for Unresectable Hepatocellular Carcinoma: Result From Phase III Trials.

  • Linyan Zeng‎ et al.
  • Cancer control : journal of the Moffitt Cancer Center‎
  • 2022‎

Programmed cell death (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have been increasingly used in cancer therapy. The aim of this study was conducted a meta-analysis to assess the efficacy and safety of PD-1/PD-L1 inhibitors in patients with unresectable hepatocellular carcinoma (uHCC). A total of 1657 patients were included. The completed phase III trials with details data, such as overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and adverse effects (AEs) were included. The pooled hazard ratio (HR) of OS and PFS were .75 (95% CI: .61-.92) and .74 (95% CI: .56-.97) with heterogeneity between PD-1/PD-L1 inhibitors groups and control groups. Sensitivity analysis revealed IMbrave-150 could be the most important factor of heterogeneity for OS, while CheckMate-459 was the main fact of heterogeneity for PFS. In addition, the relative risk (RR) of ORR and DCR were 2.43 (95% CI: 1.80-3.26) and 1.26 (95% CI: 1.11-1.43) with low heterogeneity in PD-1/PD-L1 inhibitors groups. The therapeutic effect of PD-1/PD-L1 inhibitors was better in females, Asia without Japan, BCLC status C and infected hepatitis groups. The RR of AEs from any cause and serious adverse events (SAEs) for patients receiving PD-1/PD-L1 inhibitors were 1.03 (95% CI: .93-1.13) and 1.13 (95% CI: .89-1.44), respectively. Pruritus was the most common AEs reported in 10% of patients or more (RR = 1.69, 95% CI: 1.33-2.15). In conclusion, PD-L1 inhibitor combined with anti-VEGF antibody could improve the prognosis of patients with uHCC. However, caution should be taken for AEs during patients receiving PD-1/PD-L1 inhibitors.


Safety and Activity of Programmed Cell Death 1 Versus Programmed Cell Death Ligand 1 Inhibitors for Platinum-Resistant Urothelial Cancer: A Meta-Analysis of Published Clinical Trials.

  • Zaishang Li‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Programmed death 1/ligand 1 (PD-1/L1) inhibitors have acceptable antitumor activity in patients with platinum-resistant urothelial cancer (UC). However, the reliability and comparability of the antitumor activity, safety profiles and survival outcomes of different immune checkpoint inhibitors are unknown. Our objective was to compare the clinical efficacy and safety of anti-PD-1/PD-L1 therapies in platinum-resistant UC patients.


Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2.

  • Tadashi Yokosuka‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1-mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain-containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1-TCR colocalization within microclusters is required for efficient PD-1-mediated suppression. This inhibitory mechanism also functions in PD-1(hi) T cells generated in vivo and can be overridden by a neutralizing anti-PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


Programmed cell death-1 receptor-mediated regulation of Tbet+NK1.1- innate lymphoid cells within the tumor microenvironment.

  • Jing Xuan Lim‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Innate lymphoid cells (ILCs) play a key role in tissue-mediated immunity and can be controlled by coreceptor signaling. Here, we define a subset of ILCs that are Tbet+NK1.1- and are present within the tumor microenvironment (TME). We show programmed death-1 receptor (PD-1) expression on ILCs within TME is found in Tbet+NK1.1- ILCs. PD-1 significantly controlled the proliferation and function of Tbet+NK1.1- ILCs in multiple murine and human tumors. We found tumor-derived lactate enhanced PD-1 expression on Tbet+NK1.1- ILCs within the TME, which resulted in dampened the mammalian target of rapamycin (mTOR) signaling along with increased fatty acid uptake. In line with these metabolic changes, PD-1-deficient Tbet+NK1.1- ILCs expressed significantly increased IFNγ and granzyme B and K. Furthermore, PD-1-deficient Tbet+NK1.1- ILCs contributed toward diminished tumor growth in an experimental murine model of melanoma. These data demonstrate that PD-1 can regulate antitumor responses of Tbet+NK1.1- ILCs within the TME.


The prediction potential of neutrophil-to-lymphocyte ratio for the therapeutic outcomes of programmed death receptor-1/programmed death ligand 1 inhibitors in non-small cell lung cancer patients: A meta-analysis.

  • Ying Huang‎ et al.
  • Medicine‎
  • 2020‎

Programmed death receptor-1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors have been demonstrated to improve the prognosis of patients with advanced non-small cell lung cancer (NSCLC) compared with chemotherapy. However, there were still some non-responders. Thus, how to effectively screen the responder may be an important issue. Recent studies revealed the immune-related indicator, neutrophil-lymphocyte ratio (NLR), may predict the therapeutic effects of anti-PD1/PD-L1 antibodies; however, the results were controversial. This study was to re-evaluate the prognostic potential of NLR for NSCLC patients receiving PD1/PD-L1 inhibitors by performing a meta-analysis.


Human IgA-Expressing Bone Marrow Plasma Cells Characteristically Upregulate Programmed Cell Death Protein-1 Upon B Cell Receptor Stimulation.

  • Annika Wiedemann‎ et al.
  • Frontiers in immunology‎
  • 2020‎

The functions of bone marrow plasma cells (BMPC) beyond antibody production are not fully elucidated and distinct subsets of BMPC suggest potential different functions. Phenotypic differences were identified for human BMPC depending on CD19 expression. Since CD19 is a co-stimulatory molecule of the B-cell-receptor (BCR), and IgA+ and IgM+ BMPC express the BCR on their surface, we here studied whether CD19 expression affects cellular responses, such as BCR signaling and the expression of checkpoint molecules. We analyzed 132 BM samples from individuals undergoing routine total hip arthroplasty. We found that both CD19+ and CD19- BMPC expressed BCR signaling molecules. Notably, the BCR-associated kinase spleen tyrosine kinase (SYK) including pSYK was higher expressed in CD19+ BMPC compared to CD19- BMPC. BCR stimulation also resulted in increased kinase phosphorylation downstream of the BCR while expression of CD19 remained stable afterwards. Interestingly, the BCR response was restricted to IgA+ BMPC independently of CD19 expression. With regard to the expression of checkpoint molecules, CD19- BMPC expressed higher levels of co-inhibitory molecule programmed cell death protein-1 (PD-1) than CD19+ BMPC. IgA+ BMPC characteristically upregulated PD-1 upon BCR stimulation in contrast to other PC subsets and inhibition of the kinase SYK abrogated PD-1 upregulation. In contrast, expression of PD-1 ligand, B and T lymphocyte attenuator (BTLA) and CD28 did not change upon BCR activation of IgA+ BMPC. Here, we identify a distinct characteristic of IgA+ BMPC that is independent of the phenotypic heterogeneity of the subsets according to their CD19 expression. The data suggest that IgA+ BMPC underlie different regulatory principles and/or exert distinct regulatory functions.


Programmed Death-1 Receptor (PD-1) as a Potential Prognosis Biomarker for Ovarian Cancer Patients.

  • Anna Pawłowska‎ et al.
  • Cancer management and research‎
  • 2020‎

Ovarian cancer (OC) is one of the most lethal gynecological malignancies. Recent studies suggest a crucial role of the PD-1/PD-L1 pathway in OC pathogenesis. Therefore, our study aimed at evaluation of the clinical importance of PD-1 expression in ovarian cancer patients.


Combination immunotherapy with interleukin-2 surface-modified tumor cell vaccine and programmed death receptor-1 blockade against renal cell carcinoma.

  • Xinji Zhang‎ et al.
  • Cancer science‎
  • 2019‎

Immunotherapy may be an effective way to prevent postoperative recurrence of renal cell carcinoma. Streptavidin-interleukin-2 (SA-IL-2) surface-modified tumor cell vaccine developed through our protein-anchor technology could induce specific antitumor T-cell responses, but this immunotherapy cannot completely eradicate the tumor. These effector T cells highly expressed programmed death receptor-1 (PD-1), and the expression of programmed death ligand-1 (PD-L1) in the tumor environment also was upregulated after SA-IL-2-modified vaccine therapy. PD-1/PD-L1 interaction promotes tumor immune evasion. Adding PD-1 blockade to SA-IL-2-modified vaccine therapy increased the number of CD4+ , CD8+ and CD8+ interferon-γ+ but not CD4+ Foxp3+ T cells. PD-1 blockade could rescue the activity of tumor-specific T lymphocytes induced by the SA-IL-2-modified vaccine. Combination therapy delayed tumor growth and protected mice against a second Renca cells but not melanoma cells challenge. Taken together, PD-1 blockade could reverse immune evasion in the treatment with SA-IL-2-modified vaccine, and eventually induce a stronger specific antitumor immune response against renal cell carcinoma.


Prognostic significance of epidermal growth factor receptor and programmed cell death-ligand 1 co-expression in esophageal squamous cell carcinoma.

  • Guoxiang Jiang‎ et al.
  • Aging‎
  • 2023‎

Our study aimed to observe the correlation between epidermal growth factor receptor (EGFR) and programmed cell death-ligand 1 (PD-L1) expression and evaluate prognostic potential of their co-expression in esophageal squamous cell carcinoma (ESCC) patients. EGFR and PD-L1 expression were evaluated by immunohistochemical analysis. We revealed that there was a positive correlation between EGFR and PD-L1 expression in ESCC (P = 0.004). According to the positive relationship between EGFR and PD-L1, all patients were divided into four groups: EGFR (+)/PD-L1 (+), EGFR (+)/PD-L1 (-), EGFR (-)/PD-L1 (+), and EGFR (-)/PD-L1 (-). In 57 ESCC patients without surgery, we found that EGFR and PD-L1 co-expression were statistically correlated with a lower objective response rate (ORR) (p = 0.029), overall survival (OS) (p = 0.018) and progression-free survival (PFS) (p = 0.045) than those with one or none positive protein. Furthermore, PD-L1 expression has a significant positive correlation with infiltration level of 19 immune cells, EGFR expression was significantly correlated with infiltration level of 12 immune cells. The infiltration level of CD8 T cell and B cell were negatively correlated with EGFR expression. On the contrary with EGFR, the infiltration level of CD8 T cell, and B cell were positively correlated with PD-L1 expression. In conclusion, EGFR and PD-L1 co-expression could predict poor ORR and survival in ESCC without surgery, indicating a subset of patients who may benefit from a combination of targeted therapy against EGFR and PD-L1, which may expand the population benefiting from immunotherapy and reduce the occurrence of hyper progressive diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: