Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model.

  • Heather C Rice‎ et al.
  • Molecular neurodegeneration‎
  • 2020‎

The amyloid-β (Aβ) peptide, the primary constituent of amyloid plaques found in Alzheimer's disease (AD) brains, is derived from sequential proteolytic processing of the Amyloid Precursor Protein (APP). However, the contribution of different cell types to Aβ deposition has not yet been examined in an in vivo, non-overexpression system. Here, we show that endogenous APP is highly expressed in a heterogeneous subset of GABAergic interneurons throughout various laminae of the hippocampus, suggesting that these cells may have a profound contribution to AD plaque pathology. We then characterized the laminar distribution of amyloid burden in the hippocampus of an APP knock-in mouse model of AD. To examine the contribution of GABAergic interneurons to plaque pathology, we blocked Aβ production specifically in these cells using a cell type-specific knock-out of BACE1. We found that during early stages of plaque deposition, interneurons contribute to approximately 30% of the total plaque load in the hippocampus. The greatest contribution to plaque load (75%) occurs in the stratum pyramidale of CA1, where plaques in human AD cases are most prevalent and where pyramidal cell bodies and synaptic boutons from perisomatic-targeting interneurons are located. These findings reveal a crucial role of GABAergic interneurons in the pathology of AD. Our study also highlights the necessity of using APP knock-in models to correctly evaluate the cellular contribution to amyloid burden since APP overexpressing transgenic models drive expression in cell types according to the promoter and integration site and not according to physiologically relevant expression mechanisms.


A third-generation mouse model of Alzheimer's disease shows early and increased cored plaque pathology composed of wild-type human amyloid β peptide.

  • Kaori Sato‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

We previously developed single App knock-in mouse models of Alzheimer's disease (AD) harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice, respectively). These models showed Aβ pathology, neuroinflammation, and cognitive impairment in an age-dependent manner. The former model exhibits extensive pathology as early as 6 months, but is unsuitable for investigating Aβ metabolism and clearance because the Arctic mutation renders Aβ resistant to proteolytic degradation and prone to aggregation. In particular, it is inapplicable to preclinical immunotherapy studies due to its discrete affinity for anti-Aβ antibodies. The latter model may take as long as 18 months for the pathology to become prominent, which leaves an unfulfilled need for an Alzheimer's disease animal model that is both swift to show pathology and useful for antibody therapy. We thus utilized mutant Psen1 knock-in mice into which a pathogenic mutation (P117L) had been introduced to generate a new model that exhibits early deposition of wild-type human Aβ by crossbreeding the AppNL-F line with the Psen1P117L/WT line. We show that the effects of the pathogenic mutations in the App and Psen1 genes are additive or synergistic. This new third-generation mouse model showed more cored plaque pathology and neuroinflammation than AppNL-G-F mice and will help accelerate the development of disease-modifying therapies to treat preclinical AD.


Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease.

  • Yasufumi Sakakibara‎ et al.
  • BMC neuroscience‎
  • 2019‎

Knock-in (KI) mouse models of Alzheimer's disease (AD) that endogenously overproduce Aβ without non-physiological overexpression of amyloid precursor protein (APP) provide important insights into the pathogenic mechanisms of AD. Previously, we reported that AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic) exhibited emotional alterations before the onset of definitive cognitive deficits. To determine whether these mice exhibit deficits in learning and memory at more advanced ages, we compared the Morris water maze performance of AppNL-G-F and AppNL mice, which harbor only the Swedish mutation, with that of wild-type (WT) C57BL/6J mice at the age of 24 months. To correlate cognitive deficits and neuroinflammation, we also examined Aβ plaque formation and reactive gliosis in these mice.


Aβ secretion and plaque formation depend on autophagy.

  • Per Nilsson‎ et al.
  • Cell reports‎
  • 2013‎

Alzheimer's disease (AD) is a neurodegenerative disease biochemically characterized by aberrant protein aggregation, including amyloid beta (Aβ) peptide accumulation. Protein aggregates in the cell are cleared by autophagy, a mechanism impaired in AD. To investigate the role of autophagy in Aβ pathology in vivo, we crossed amyloid precursor protein (APP) transgenic mice with mice lacking autophagy in excitatory forebrain neurons obtained by conditional knockout of autophagy-related protein 7. Remarkably, autophagy deficiency drastically reduced extracellular Aβ plaque burden. This reduction of Aβ plaque load was due to inhibition of Aβ secretion, which led to aberrant intraneuronal Aβ accumulation in the perinuclear region. Moreover, autophagy-deficiency-induced neurodegeneration was exacerbated by amyloidosis, which together severely impaired memory. Our results establish a function for autophagy in Aβ metabolism: autophagy influences secretion of Aβ to the extracellular space and thereby directly affects Aβ plaque formation, a pathological hallmark of AD.


Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model.

  • Kevin Clayton‎ et al.
  • Molecular neurodegeneration‎
  • 2021‎

Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer's disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology.


Istradefylline reduces memory deficits in aging mice with amyloid pathology.

  • Anna G Orr‎ et al.
  • Neurobiology of disease‎
  • 2018‎

Adenosine A2A receptors are putative therapeutic targets for neurological disorders. The adenosine A2A receptor antagonist istradefylline is approved in Japan for Parkinson's disease and is being tested in clinical trials for this condition elsewhere. A2A receptors on neurons and astrocytes may contribute to Alzheimer's disease (AD) by impairing memory. However, it is not known whether istradefylline enhances cognitive function in aging animals with AD-like amyloid plaque pathology. Here, we show that elevated levels of Aβ, C-terminal fragments of the amyloid precursor protein (APP), or amyloid plaques, but not overexpression of APP per se, increase astrocytic A2A receptor levels in the hippocampus and neocortex of aging mice. Moreover, in amyloid plaque-bearing mice, low-dose istradefylline treatment enhanced spatial memory and habituation, supporting the conclusion that, within a well-defined dose range, A2A receptor blockers might help counteract memory problems in patients with Alzheimer's disease.


Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease.

  • Constanze Depp‎ et al.
  • Nature‎
  • 2023‎

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Amyloid β induces interneuron-specific changes in the hippocampus of APPNL-F mice.

  • Katalin E Sos‎ et al.
  • PloS one‎
  • 2020‎

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and amyloid-beta (Aβ) depositions generated by the proteolysis of amyloid precursor protein (APP) in the brain. In APPNL-F mice, APP gene was humanized and contains two familial AD mutations, and APP-unlike other mouse models of AD-is driven by the endogenous mouse APP promoter. Similar to people without apparent cognitive dysfunction but with heavy Aβ plaque load, we found no significant decline in the working memory of adult APPNL-F mice, but these mice showed decline in the expression of normal anxiety. Using immunohistochemistry and 3D block-face scanning electron microscopy, we found no changes in GABAA receptor positivity and size of somatic and dendritic synapses of hippocampal interneurons. We did not find alterations in the level of expression of perineuronal nets around parvalbumin (PV) interneurons or in the density of PV- or somatostatin-positive hippocampal interneurons. However, in contrast to other investigated cell types, PV interneuron axons were occasionally mildly dystrophic around Aβ plaques, and the synapses of PV-positive axon initial segment (AIS)-targeting interneurons were significantly enlarged. Our results suggest that PV interneurons are highly resistant to amyloidosis in APPNL-F mice and amyloid-induced increase in hippocampal pyramidal cell excitability may be compensated by PV-positive AIS-targeting cells. Mechanisms that make PV neurons more resilient could therefore be exploited in the treatment of AD for mitigating Aβ-related inflammatory effects on neurons.


G protein-biased GPR3 signaling ameliorates amyloid pathology in a preclinical Alzheimer's disease mouse model.

  • Yunhong Huang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Biased G protein-coupled receptor (GPCR) ligands, which preferentially activate G protein or β-arrestin signaling pathways, are leading to the development of drugs with superior efficacy and reduced side effects in heart disease, pain management, and neuropsychiatric disorders. Although GPCRs are implicated in the pathophysiology of Alzheimer's disease (AD), biased GPCR signaling is a largely unexplored area of investigation in AD. Our previous work demonstrated that GPR3-mediated β-arrestin signaling modulates amyloid-β (Aβ) generation in vitro and that Gpr3 deficiency ameliorates Aβ pathology in vivo. However, Gpr3-deficient mice display several adverse phenotypes, including elevated anxiety-like behavior, reduced fertility, and memory impairment, which are potentially associated with impaired G protein signaling. Here, we generated a G protein-biased GPR3 mouse model to investigate the physiological and pathophysiological consequences of selective elimination of GPR3-mediated β-arrestin signaling in vivo. In contrast to Gpr3-deficient mice, G protein-biased GPR3 mice do not display elevated anxiety levels, reduced fertility, or cognitive impairment. We further determined that G protein-biased signaling reduces soluble Aβ levels and leads to a decrease in the area and compaction of amyloid plaques in the preclinical AppNL-G-F AD mouse model. The changes in amyloid pathology are accompanied by robust microglial and astrocytic hypertrophy, which suggest a protective glial response that may limit amyloid plaque development in G protein-biased GPR3 AD mice. Collectively, these studies indicate that GPR3-mediated G protein and β-arrestin signaling produce discrete and separable effects and provide proof of concept for the development of safer GPCR-targeting therapeutics with more directed pharmacological action for AD.


Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice.

  • Kiwami Kidana‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

Deposition of amyloid-β (Aβ) as senile plaques is one of the pathological hallmarks in the brains of Alzheimer's disease (AD) patients. In addition, glial activation has been found in AD brains, although the precise pathological role of astrocytes remains unclear. Here, we identified kallikrein-related peptidase 7 (KLK7) as an astrocyte-derived Aβ degrading enzyme. Expression of KLK7 mRNA was significantly decreased in the brains of AD patients. Ablation of Klk7 exacerbated the thioflavin S-positive Aβ pathology in AD model mice. The expression of Klk7 was upregulated by Aβ treatment in the primary astrocyte, suggesting that Klk7 is homeostatically modulated by Aβ-induced responses. Finally, we found that the Food and Drug Administration-approved anti-dementia drug memantine can increase the expression of Klk7 and Aβ degradation activity specifically in the astrocytes. These data suggest that KLK7 is an important enzyme in the degradation and clearance of deposited Aβ species by astrocytes involved in the pathogenesis of AD.


11C-PiB and 124I-Antibody PET Provide Differing Estimates of Brain Amyloid-β After Therapeutic Intervention.

  • Silvio R Meier‎ et al.
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine‎
  • 2022‎

PET imaging of amyloid-β (Aβ) has become an important component of Alzheimer disease diagnosis. 11C-Pittsburgh compound B (11C-PiB) and analogs bind to fibrillar Aβ. However, levels of nonfibrillar, soluble, aggregates of Aβ appear more dynamic during disease progression and more affected by Aβ-reducing treatments. The aim of this study was to compare an antibody-based PET ligand targeting nonfibrillar Aβ with 11C-PiB after β-secretase (BACE-1) inhibition in 2 Alzheimer disease mouse models at an advanced stage of Aβ pathology. Methods: Transgenic ArcSwe mice (16 mo old) were treated with the BACE-1 inhibitor NB-360 for 2 mo, whereas another group was kept as controls. A third group was analyzed at the age of 16 mo as a baseline. Mice were PET-scanned with 11C-PiB to measure Aβ plaque load followed by a scan with the bispecific radioligand 124I-RmAb158-scFv8D3 to investigate nonfibrillar aggregates of Aβ. The same study design was then applied to another mouse model, AppNL-G-F In this case, NB-360 treatment was initiated at the age of 8 mo and animals were scanned with 11C-PiB-PET and 125I-RmAb158-scFv8D3 SPECT. Brain tissue was isolated after scanning, and Aβ levels were assessed. Results: 124I-RmAb158-scFv8D3 concentrations measured with PET in hippocampus and thalamus of NB-360-treated ArcSwe mice were similar to those observed in baseline animals and significantly lower than concentrations observed in same-age untreated controls. Reduced 125I-RmAb158-scFv8D3 retention was also observed with SPECT in hippocampus, cortex, and cerebellum of NB-360-treated AppNL-G-F mice. Radioligand in vivo concentrations corresponded to postmortem brain tissue analysis of soluble Aβ aggregates. For both models, mice treated with NB-360 did not display a reduced 11C-PiB signal compared with untreated controls, and further, both NB-360 and control mice tended, although not reaching significance, to show higher 11C-PiB signal than the baseline groups. Conclusion: This study demonstrated the ability of an antibody-based radioligand to detect changes in brain Aβ levels after anti-Aβ therapy in ArcSwe and AppNL-G-F mice with pronounced Aβ pathology. In contrast, the decreased Aβ levels could not be quantified with 11C-PiB PET, suggesting that these ligands detect different pools of Aβ.


Cystatin F (Cst7) drives sex-dependent changes in microglia in an amyloid-driven model of Alzheimer's disease.

  • Michael J D Daniels‎ et al.
  • eLife‎
  • 2023‎

Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aβ) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aβ burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.


Accumulation of m 6 A exhibits stronger correlation with MAPT than β-amyloid pathology in an APP NL-G-F /MAPT P301S mouse model of Alzheimer's disease.

  • Lulu Jiang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular β-amyloid (Aβ) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APP NL-G-F MAPT P301S mouse that at 6 months of age exhibits robust Aβ plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aβ pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aβ accumulation. The APP NL-G-F /MAPT P301S mouse model also showed strong accumulation of N 6 -methyladenosine (m 6 A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m 6 A from mRNA, respectively. Thus, the APP NL- G-F /MAPT P301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.


Autophagy-related protein 7 deficiency in amyloid β (Aβ) precursor protein transgenic mice decreases Aβ in the multivesicular bodies and induces Aβ accumulation in the Golgi.

  • Per Nilsson‎ et al.
  • The American journal of pathology‎
  • 2015‎

Alzheimer disease (AD) is biochemically characterized by increased levels of amyloid β (Aβ) peptide, which aggregates into extracellular Aβ plaques in AD brains. Before plaque formation, Aβ accumulates intracellularly in both AD brains and in the brains of AD model mice, which may contribute to disease progression. Autophagy, which is impaired in AD, clears cellular protein aggregates and participates in Aβ metabolism. In addition to a degradative role of autophagy in Aβ metabolism we recently showed that Aβ secretion is inhibited in mice lacking autophagy-related gene 7 (Atg7) in excitatory neurons in the mouse forebrain. This inhibition of Aβ secretion leads to intracellular accumulation of Aβ. Here, we used fluorescence and immunoelectron microscopy to elucidate the subcellular localization of the intracellular Aβ accumulation which accumulates in Aβ precursor protein mice lacking Atg7. Autophagy deficiency causes accumulation of p62(+) aggregates, but these aggregates do not contain Aβ. However, knockdown of Atg7 induced Aβ accumulation in the Golgi and a concomitant reduction of Aβ in the multivesicular bodies. This indicates that Atg7 influences the transport of Aβ possibly derived from Golgi to multivesicular bodies.


Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals.

  • Timothy J Hark‎ et al.
  • Cell systems‎
  • 2021‎

Compromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aβ) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aβ accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired. Presynaptic proteins with impaired turnover, particularly synaptic vesicle (SV)-associated proteins, have elevated levels, misfold in both a plaque-dependent and -independent manner, and interact with APP and Aβ. Concurrent with elevated levels of SV-associated proteins, we found an enlargement of the SV pool as well as enhancement of presynaptic potentiation. Together, our findings reveal that the presynaptic terminal is particularly vulnerable and represents a critical site for manifestation of initial AD etiology. A record of this paper's transparent peer review process is included in the Supplemental Information.


Temporal progression of Alzheimer's disease in brains and intestines of transgenic mice.

  • Gunjan D Manocha‎ et al.
  • Neurobiology of aging‎
  • 2019‎

The amyloid beta (Aβ) peptide is associated with the neurodegenerative and inflammatory changes in brains affected by Alzheimer's disease (AD). We hypothesized that the enteric nervous system also produces Aβ in an intestinal component of disease. To test this idea, we compared C57BL/6 wild-type (WT) male and female mice to two models of Alzheimer's disease, amyloid precursor protein (APP)/presenilin 1 (PS1) mice and amyloid precursor protein NL-G-F (AppNL-G-F) mice, at 3, 6, and 12 months of age. Brain Aβ plaque deposition in AppNL-G-F mice preceded that in the APP/PS1 mice, observable by 3 months. Three-month-old female AppNL-G-F mice had decreased intestinal motility compared with WT and APP/PS1 mice. However, 3-month-old female APP/PS1 mice demonstrated increased intestinal permeability compared with WT and AppNL-G-F mice. Both sexes of APP/PS1 and AppNL-G-F mice demonstrated increased colon lipocalin 2 mRNA and insoluble Aβ 1-42 levels at 3 months. These data demonstrate an unrecognized enteric aspect of disease in 2 different mouse models correlating with the earliest brain changes.


Spatial reversal learning defect coincides with hypersynchronous telencephalic BOLD functional connectivity in APPNL-F/NL-F knock-in mice.

  • Disha Shah‎ et al.
  • Scientific reports‎
  • 2018‎

Amyloid pathology occurs early in Alzheimer's disease (AD), and has therefore been the focus of numerous studies. Transgenic mouse models have been instrumental to study amyloidosis, but observations might have been confounded by APP-overexpression artifacts. The current study investigated early functional defects in an APP knock-in mouse model, which allows assessing the effects of pathological amyloid-beta (Aβ) without interference of APP-artifacts. Female APPNL/NL knock-in mice of 3 and 7 months old were compared to age-matched APPNL-F/NL-F mice with increased Aβ42/40 ratio and initial Aβ-plaque deposition around 6 months of age. Spatial learning was examined using a Morris water maze protocol consisting of acquisition and reversal trials interleaved with reference memory tests. Functional connectivity (FC) of brain networks was assessed using resting-state functional MRI (rsfMRI). The Morris water maze data revealed that 3 months old APPNL-F/NL-F mice were unable to reach the same reference memory proficiency as APPNL/NL mice after reversal training. This cognitive defect in 3-month-old APPNL-F/NL-F mice coincided with hypersynchronous FC of the hippocampal, cingulate, caudate-putamen, and default-mode-like networks. The occurrence of these defects in APPNL-F/NL-F mice demonstrates that cognitive flexibility and synchronicity of telencephalic activity are specifically altered by early Aβ pathology without changes in APP neurochemistry.


INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model.

  • Akihiro Iguchi‎ et al.
  • iScience‎
  • 2023‎

The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid β (Aβ) plaques, impair their transcriptional response to Aβ, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aβ plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aβ toxicity, thereby modulates Aβ-dependent pathological conversion of tau.


Astaxanthin Ameliorated Parvalbumin-Positive Neuron Deficits and Alzheimer's Disease-Related Pathological Progression in the Hippocampus of AppNL-G-F/NL-G-F Mice.

  • Nobuko Hongo‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Growing evidence suggests that oxidative stress due to amyloid β (Aβ) accumulation is involved in Alzheimer's disease (AD) through the formation of amyloid plaque, which leads to hyperphosphorylation of tau, microglial activation, and cognitive deficits. The dysfunction or phenotypic loss of parvalbumin (PV)-positive neurons has been implicated in cognitive deficits. Astaxanthin is one of carotenoids and known as a highly potent antioxidant. We hypothesized that astaxanthin's antioxidant effects may prevent the onset of cognitive deficits in AD by preventing AD pathological processes associated with oxidative stress. In the present study, we investigated the effects of astaxanthin intake on the cognitive and pathological progression of AD in a mouse model of AD. The AppNL-G-F/NL-G-F mice were fed with or without astaxanthin from 5-to-6 weeks old, and cognitive functions were evaluated using a Barnes maze test at 6 months old. PV-positive neurons were investigated in the hippocampus. Aβ42 deposits, accumulation of microglia, and phosphorylated tau (pTau) were immunohistochemically analyzed in the hippocampus. The hippocampal anti-oxidant status was also investigated. The Barnes maze test indicated that astaxanthin significantly ameliorated memory deficits. Astaxanthin reduced Aβ42 deposition and pTau-positive areal fraction, while it increased PV-positive neuron density and microglial accumulation per unit fraction of Aβ42 deposition in the hippocampus. Furthermore, astaxanthin increased total glutathione (GSH) levels, although 4-hydroxy-2,3-trans-nonenal (4-HNE) protein adduct levels (oxidative stress marker) remained high in the astaxanthin supplemented mice. The results indicated that astaxanthin ameliorated memory deficits and significantly reversed AD pathological processes (Aβ42 deposition, pTau formation, GSH decrease, and PV-positive neuronal deficits). The elevated GSH levels and resultant recovery of PV-positive neuron density, as well as microglial activation, may prevent these pathological processes.


Early-life stress induces the development of Alzheimer's disease pathology via angiopathy.

  • Tomoko Tanaka‎ et al.
  • Experimental neurology‎
  • 2021‎

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is a major societal, scientific, and economic problem. Several early-life factors associated with an increased risk for the clinical diagnosis of AD have recently been identified. In the present study, we investigated the involvement of early-life stress in the pathogenesis of AD using heterozygous amyloid precursor protein (APP) mutant mice (AppNL-G-F/wt) and wild-type (Appwt/wt) mice. We found that maternal-separated Appwt/wt mice showed narrowing of vessels and decreased pericyte coverage of capillaries in the prefrontal cortex, while maternal-separated AppNL-G-F/wt mice additionally showed the impairment of cognitive function, earlier formation of Aβ plaques, increased vessel-associated microglia, and disruption of the blood-brain barrier. Substantial activation of microglia was detected in the maternal-separated AppNL-G-F/wt mice and maternal-separated Appwt/wt mice. At an early stage, morphological changes and inflammatory responses were observed in the microglia of the maternal-separated AppNL-G-F/wt mice and maternal-separated Appwt/wt mice, and morphological changes in the microglia were observed in the non-maternal-separated AppNL-G-F/wt mice. Microglia activation induced by maternal separation in combination with the APP mutation may impair the vascular system, leading to AD progression. These findings therefore suggest that maternal separation results in the early induction of AD-related pathology via angiopathy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: