Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Autophagy-related protein 7 deficiency in amyloid β (Aβ) precursor protein transgenic mice decreases Aβ in the multivesicular bodies and induces Aβ accumulation in the Golgi.

The American journal of pathology | 2015

Alzheimer disease (AD) is biochemically characterized by increased levels of amyloid β (Aβ) peptide, which aggregates into extracellular Aβ plaques in AD brains. Before plaque formation, Aβ accumulates intracellularly in both AD brains and in the brains of AD model mice, which may contribute to disease progression. Autophagy, which is impaired in AD, clears cellular protein aggregates and participates in Aβ metabolism. In addition to a degradative role of autophagy in Aβ metabolism we recently showed that Aβ secretion is inhibited in mice lacking autophagy-related gene 7 (Atg7) in excitatory neurons in the mouse forebrain. This inhibition of Aβ secretion leads to intracellular accumulation of Aβ. Here, we used fluorescence and immunoelectron microscopy to elucidate the subcellular localization of the intracellular Aβ accumulation which accumulates in Aβ precursor protein mice lacking Atg7. Autophagy deficiency causes accumulation of p62(+) aggregates, but these aggregates do not contain Aβ. However, knockdown of Atg7 induced Aβ accumulation in the Golgi and a concomitant reduction of Aβ in the multivesicular bodies. This indicates that Atg7 influences the transport of Aβ possibly derived from Golgi to multivesicular bodies.

Pubmed ID: 25433221 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions

NEURON (tool)

RRID:SCR_005393

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

View all literature mentions

Wako (tool)

RRID:SCR_013651

An Antibody supplier

View all literature mentions