Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Purification and characterization of the first γ-phospholipase inhibitor (γPLI) from Bothrops jararaca snake serum.

  • Caroline Serino-Silva‎ et al.
  • PloS one‎
  • 2018‎

Phospholipases A2 (PLA2) are enzymes acting on the cell membrane phospholipids resulting in fatty acids and lysophospholipids and deconstructing the cell membrane. This protein is commonly found in snake venoms, causing tissue inflammation in the affected area. Evidence indicates that snakes have natural resistance to their own venom due to protective properties in plasma, that inhibit the action of proteins present in their venom. Given that, this study aimed to purify and characterize a γPLI from Bothrops jararaca serum, named γBjPLI. PLA2 inhibitor was isolated using two chromatographic steps: an ion exchange column (DEAE), followed by an affinity column (crotoxin coupled to a CNBr-activated Sepharose resin). The purity and biochemical characterization of the isolated protein were analyzed by RP-HPLC, SEC, SDS-PAGE, circular dichroism and mass spectrometry. The ability to inhibit PLA2 was determined by enzymatic activity, neutralization of paw edema and myonecrosis. The protein purity was confirmed by RP-HPLC and SEC, whilst an apparent molecular mass of 25 kDa and 20 kDa was obtained by SDS-PAGE, under reducing and non-reducing conditions, respectively. According to mass spectrometry analysis, this protein showed 72% and 68% of coverage when aligned to amino acid sequences of two proteins already described as PLIs. Thus, the inhibitory activity of enzymatic, edema and myonecrotic activities by γBjPLI suggests a role of this inhibitor for protection of these snakes against self-envenomation.


BoaγPLI: Structural and functional characterization of the gamma phospholipase A2 plasma inhibitor from the non-venomous Brazilian snake Boa constrictor.

  • Caroline Fabri Bittencourt Rodrigues‎ et al.
  • PloS one‎
  • 2020‎

Plasma in several organisms has components that promote resistance to envenomation by inhibiting specific proteins from snake venoms, such as phospholipases A2 (PLA2s). The major hypothesis for inhibitor's presence would be the protection against self-envenomation in venomous snakes, but the occurrence of inhibitors in non-venomous snakes and other animals has opened new perspectives for this molecule. Thus, this study showed for the first time the structural and functional characterization of the PLA2 inhibitor from the Boa constrictor serum (BoaγPLI), a non-venomous snake that dwells extensively the Brazilian territory. Therefore, the inhibitor was isolated from B. constrictor serum, with 0.63% of recovery. SDS-PAGE showed a band at ~25 kDa under reducing conditions and ~20 kDa under non-reducing conditions. Chromatographic analyses showed the presence of oligomers formed by BoaγPLI. Primary structure of BoaγPLI suggested an estimated molecular mass of 22 kDa. When BoaγPLI was incubated with Asp-49 and Lys-49 PLA2 there was no severe change in its dichroism spectrum, suggesting a non-covalent interaction. The enzymatic assay showed a dose-dependent inhibition, up to 48.2%, when BoaγPLI was incubated with Asp-49 PLA2, since Lys-49 PLA2 has a lack of enzymatic activity. The edematogenic and myotoxic effects of PLA2s were also inhibited by BoaγPLI. In summary, the present work provides new insights into inhibitors from non-venomous snakes, which possess PLIs in their plasma, although the contact with venom is unlikely.


From birth to adulthood: An analysis of the Brazilian lancehead (Bothrops moojeni) venom at different life stages.

  • Daniela Miki Hatakeyama‎ et al.
  • PloS one‎
  • 2021‎

The Brazilian lancehead (Bothrops moojeni) has a wide distribution in Brazil and represents a serious public health hazard. Previous works reported that the symptoms of snakebites caused by B. moojeni juveniles' bites were mainly related to coagulation, while those caused by adults' bites had a more prominent local damage. In this work, we analyzed the venoms of B. moojeni at different life stages to better understand the ontogeny shift in this species. Snakes were grouped by age and sex, and venom pools were formed accordingly. Compositional analyses by one-dimensional electrophoresis (1-DE), chromatography, and mass spectrometry revealed that ontogenetic changes might be mostly related to phospholipase A2 (PLA2) and metalloproteases. Regarding the venoms functional aspect, proteolytic, L-amino acid oxidase, PLA2, and coagulant in vitro activities were assayed, but only the first and the last ones showed age-related changes, with the venom of snakes up to 1 year-old displaying lower proteolytic and higher coagulant activities, while those from 2 years-old onward presented the opposite relation. The venoms of 3 years-old snakes were exceptions to the compositional and functional pattern of adults as both venoms presented profiles similar to neonates. Sex-related differences were observed in specific groups and were not age-related. In vivo experiments (median lethal dose and hemorrhagic activity) were statistically similar between neonates and adults, however we verified that the adult venom killed mice faster comparing to the neonates. All venoms were mostly recognized by the antibothropic serum and displayed similar profiles to 1-DE in western blotting. In conclusion, the Brazilian lancehead venom showed ontogenetic shift in its composition and activities. Furthermore, this change occurred in snakes from 1 to 2 years-old, and interestingly the venom pools from 3 years-old snakes had particular characteristics, which highlights the importance of comprehensive studies to better understand venom variability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: