Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 352 papers

Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia.

  • Fumio Yoshikawa‎ et al.
  • PloS one‎
  • 2010‎

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)(4)-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.


Phosphatidylinositol-glycan-phospholipase D is involved in neurodegeneration in prion disease.

  • Jae-Kwang Jin‎ et al.
  • PloS one‎
  • 2015‎

PrPSc is formed from a normal glycosylphosphatidylinositol (GPI)-anchored prion protein (PrPC) by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD) was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie), and in both the brains and cerebrospinal fluids (CSF) of sporadic and familial Creutzfeldt-Jakob disease (CJD) patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer's disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.


Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans.

  • Neale Harrison‎ et al.
  • PloS one‎
  • 2014‎

N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.


Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity.

  • Harold J G Meijer‎ et al.
  • PloS one‎
  • 2011‎

In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol.


Genome-Wide Comparative Analysis of the Phospholipase D Gene Families among Allotetraploid Cotton and Its Diploid Progenitors.

  • Kai Tang‎ et al.
  • PloS one‎
  • 2016‎

In this study, 40 phospholipase D (PLD) genes were identified from allotetraploid cotton Gossypium hirsutum, and 20 PLD genes were examined in diploid cotton Gossypium raimondii. Combining with 19 previously identified Gossypium arboreum PLD genes, a comparative analysis was performed among the PLD gene families among allotetraploid and two diploid cottons. Based on the orthologous relationships, we found that almost each G. hirsutum PLD had a corresponding homolog in the G. arboreum and G. raimondii genomes, except for GhPLDβ3A, whose homolog GaPLDβ3 may have been lost during the evolution of G. arboreum after the interspecific hybridization. Phylogenetic analysis showed that all of the cotton PLDs were unevenly classified into six numbered subgroups: α, β/γ, δ, ε, ζ and φ. An N-terminal C2 domain was found in the α, β/γ, δ and ε subgroups, while phox homology (PX) and pleckstrin homology (PH) domains were identified in the ζ subgroup. The subgroup φ possessed a single peptide instead of a functional domain. In each phylogenetic subgroup, the PLDs showed high conservation in gene structure and amino acid sequences in functional domains. The expansion of GhPLD and GrPLD gene families were mainly attributed to segmental duplication and partly attributed to tandem duplication. Furthermore, purifying selection played a critical role in the evolution of PLD genes in cotton. Quantitative RT-PCR documented that allotetraploid cotton PLD genes were broadly expressed and each had a unique spatial and developmental expression pattern, indicating their functional diversification in cotton growth and development. Further analysis of cis-regulatory elements elucidated transcriptional regulations and potential functions. Our comparative analysis provided valuable information for understanding the putative functions of the PLD genes in cotton fiber.


Phospholipase D is involved in the formation of Golgi associated clathrin coated vesicles in human parotid duct cells.

  • Lorena Brito de Souza‎ et al.
  • PloS one‎
  • 2014‎

Phospholipase D (PLD) has been implicated in many cellular functions, such as vesicle trafficking, exocytosis, differentiation, and proliferation. The aim of this study was to characterize the role of PLD in HSY cells, a human cell line originating from the intercalated duct of the parotid gland. As the function and intracellular localization of PLD varies according to cell type, initially, the intracellular localization of PLD1 and PLD2 was determined. By immunofluorescence, PLD1 and PLD2 both showed a punctate cytoplasmic distribution with extensive co-localization with TGN-46. PLD1 was also found in the nucleus, while PLD2 was associated with the plasma membrane. Treatment of cells with the primary alcohol 1-butanol inhibits the hydrolysis of phosphatidylcoline by PLD thereby suppressing phosphatidic acid (PA) production. In untreated HSY cells, there was only a slight co-localization of PLD with the clathrin coated vesicles. When HSY cells were incubated with 1-butanol the total number of clathrin coated vesicles increased, especially in the juxtanuclear region and the co-localization of PLD with the clathrin coated vesicles was augmented. Transmission electron microscopy confirmed that the number of Golgi-associated coated vesicles was greater. Treatment with 1-butanol also affected the Golgi apparatus, increasing the volume of the Golgi saccules. The decrease in PA levels after treatment with 1-butanol likewise resulted in an accumulation of enlarged lysosomes in the perinuclear region. Therefore, in HSY cells PLD appears to be involved in the formation of Golgi associated clathrin coated vesicles as well as in the structural maintenance of the Golgi apparatus.


Orexin A inhibits propofol-induced neurite retraction by a phospholipase D/protein kinase Cε-dependent mechanism in neurons.

  • Karin Björnström‎ et al.
  • PloS one‎
  • 2014‎

The intravenous anaesthetic propofol retracts neurites and reverses the transport of vesicles in rat cortical neurons. Orexin A (OA) is an endogenous neuropeptide regulating wakefulness and may counterbalance anaesthesia. We aim to investigate if OA interacts with anaesthetics by inhibition of the propofol-induced neurite retraction.


Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells.

  • Dong Woo Kang‎ et al.
  • PloS one‎
  • 2010‎

Aberrant activation of the canonical Wnt/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Phopholipase D (PLD) has been implicated in progression of colorectal carcinoma However, an understanding of the targets and regulation of this important pathway remains incomplete and besides, relationship between Wnt signaling and PLD is not known.


Dopamine-induced plasticity, phospholipase D (PLD) activity and cocaine-cue behavior depend on PLD-linked metabotropic glutamate receptors in amygdala.

  • Balaji Krishnan‎ et al.
  • PloS one‎
  • 2011‎

Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2-2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.


The Clinical Significance of Glycoprotein Phospholipase D Levels in Distinguishing Early Stage Latent Autoimmune Diabetes in Adults and Type 2 Diabetes.

  • Wen Qin‎ et al.
  • PloS one‎
  • 2016‎

Autoantibodies have been widely used as markers of latent autoimmune diabetes in adults (LADA); however, the specificity and sensitivity of autoantibodies as markers of LADA are weak compared with those found in type 1 diabetes (T1DM). In this study, we aimed to identify other plasma proteins as potential candidates that can be used effectively to determine early stage LADA and type 2 diabetes (T2DM) to facilitate early diagnosis and treatment. These issues were addressed by studying new-onset 'classic' T1DM (n = 156), LADA (n = 174), T2DM (n = 195) and healthy cohorts (n = 166). Plasma samples were obtained from the four cohorts. We employed isobaric tag for relative and absolute quantitation (iTRAQ) together with liquid chromatography tandem mass spectrometry (LC-MS) to identify plasma proteins with significant changes in LADA. The changes were validated by Western blot and ELISA analyses. Among the four cohorts, 311 unique proteins were identified in three iTRAQ runs, with 157 present across the three data sets. Among them, 49/311 (16.0%) proteins had significant changes in LADA compared with normal controls, including glycoprotein phospholipase D (GPLD1), which was upregulated in LADA. Western blot and ELISA analyses showed that GPLD1 levels were higher in both LADA and T1DM cohorts than in both T2DM and healthy cohorts, while there were no significant differences in the plasma concentrations of GPLD1 between the LADA and T1DM cohorts. GPLD1 is implicated as a potential candidate plasma protein for determining early stage LADA and T2DM.


β-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells.

  • Xuelin Han‎ et al.
  • PloS one‎
  • 2011‎

The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells.


Restoration of responsiveness of phospholipase Cγ2-deficient platelets by enforced expression of phospholipase Cγ1.

  • Yongwei Zheng‎ et al.
  • PloS one‎
  • 2015‎

Receptor-mediated platelet activation requires phospholipase C (PLC) activity to elevate intracellular calcium and induce actin cytoskeleton reorganization. PLCs are classified into structurally distinct β, γ, δ, ε, ζ, and η isoforms. There are two PLCγ isoforms (PLCγ1, PLCγ2), which are critical for activation by tyrosine kinase-dependent receptors. Platelets express both PLCγ1 and PLCγ2. Although PLCγ2 has been shown to play a dominant role in platelet activation, the extent to which PLCγ1 contributes has not been evaluated. To ascertain the relative contributions of PLCγ1 and PLCγ2 to platelet activation, we generated conditionally PLCγ1-deficient, wild-type (WT), PLCγ2-deficient, and PLCγ1/PLCγ2 double-deficient mice and measured the ability of platelets to respond to different agonists. We found that PLCγ2 deficiency abrogated αIIbβ3-dependent platelet spreading, GPVI-dependent platelet aggregation, and thrombus formation on collagen-coated surfaces under shear conditions, which is dependent on both GPVI and αIIbβ3. Addition of exogenous ADP overcame defective spreading of PLCγ2-deficient platelets on immobilized fibrinogen, suggesting that PLCγ2 is required for granule secretion in response to αIIbβ3 ligation. Consistently, αIIbβ3-mediated release of granule contents was impaired in the absence of PLCγ2. In contrast, PLCγ1-deficient platelets spread and released granule contents normally on fibrinogen, exhibited normal levels of GPVI-dependent aggregation, and formed thrombi normally on collagen-coated surfaces. Interestingly, enforced expression of PLCγ1 fully restored GPVI-dependent aggregation and αIIbβ3-dependent spreading of PLCγ2-deficient platelets. We conclude that platelet activation through GPVI and αIIbβ3 utilizes PLCγ2 because PLCγ1 levels are insufficient to support responsiveness, but that PLCγ1 can restore responsiveness if expressed at levels normally achieved by PLCγ2.


Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant.

  • Fabian Runkel‎ et al.
  • PloS one‎
  • 2012‎

Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found.


Cytosolic phospholipase A2 modulates TLR2 signaling in synoviocytes.

  • Randi M Sommerfelt‎ et al.
  • PloS one‎
  • 2015‎

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis leading to destruction of cartilage and bone. PLA2 enzymes are key players in inflammation regulating the release of unsaturated fatty acids such as arachidonic acid (AA), a precursor of pro-inflammatory eicosanoids. Several lines of evidence point to toll-like receptors (TLRs) as drivers of synovitis and joint destruction in RA. However, few studies have addressed the implication of PLA2 activity downstream TLR activation in the synovium. Here, we aimed to characterize PLA2 enzyme involvement in TLR2-induced signaling in synovial fibroblast-like cells. TLRs1-7 and a range of sPLA2, iPLA2 and cPLA2 enzymes were found to be transcriptionally expressed in cultured synoviocytes. Activation of TLR2/1 and TLR2/6 led to phosphorylation of cPLA2α at Ser505, and induced AA release and PGE2 production; effects that were attenuated by cPLA2α inhibitors. In contrast, sPLA2 inhibitors did not affect AA or PGE2 release. cPLA2α inhibitors furthermore attenuated TLR-induced expression of IL-6, IL-8 and COX2. COX1/2 inhibitors attenuated TLR2/6-induced IL-6 transcription and protein production comparable to cPLA2α inhibition. Moreover, exogenously PGE2 added alone induced IL-6 production and completely rescued IL-6 transcription when added simultaneously with FSL-1 in the presence of a cPLA2α inhibitor. Our results demonstrate for the first time that cPLA2α is involved in TLR2/1- and TLR2/6-induced AA release, PGE2 production and pro-inflammatory cytokine expression in synoviocytes, possibly through COX/PGE2-dependent pathways. These findings expand our understanding of cPLA2α as a modulator of inflammatory molecular mechanisms in chronic diseases such as RA.


A role for phospholipase D3 in myotube formation.

  • Mary Osisami‎ et al.
  • PloS one‎
  • 2012‎

Phospholipase D3 (PLD3) is a non-classical, poorly characterized member of the PLD superfamily of signaling enzymes. PLD3 is a type II glycoprotein associated with the endoplasmic reticulum, is expressed in a wide range of tissues and cells, and undergoes dramatic upregulation in neurons and muscle cells during differentiation. Using an in vitro skeletal muscle differentiation system, we define the ER-tethering mechanism and report that increased PLD3 expression enhances myotube formation, whereas a putatively dominant-negative PLD3 mutant isoform reduces myotube formation. ER stress, which also enhances myotube formation, is shown here to increase PLD3 expression levels. PLD3 protein was observed to localize to a restricted set of subcellular membrane sites in myotubes that may derive from or constitute a subdomain of the endoplasmic reticulum. These findings suggest that PLD3 plays a role in myogenesis during myotube formation, potentially in the events surrounding ER reorganization.


Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier.

  • Peter V DiStefano‎ et al.
  • PloS one‎
  • 2016‎

The phosphoinositide-specific phospholipase C, PLCε, is a unique signaling protein with known roles in regulating cardiac myocyte growth, astrocyte inflammatory signaling, and tumor formation. PLCε is also expressed in endothelial cells, however its role in endothelial regulation is not fully established. We show that endothelial cells of multiple origins, including human pulmonary artery (HPAEC), human umbilical vein (HUVEC), and immortalized brain microvascular (hCMEC/D3) endothelial cells, express PLCε. Knockdown of PLCε in arterial endothelial monolayers decreased the effectiveness of the endothelial barrier. Concomitantly, RhoA activity and stress fiber formation were increased. PLCε-deficient arterial endothelial cells also exhibited decreased Rap1-GTP levels, which could be restored by activation of the Rap1 GEF, Epac, to rescue the increase in monolayer leak. Reintroduction of PLCε rescued monolayer leak with both the CDC25 GEF domain and the lipase domain of PLCε required to fully activate Rap1 and to rescue endothelial barrier function. Finally, we demonstrate that the barrier promoting effects PLCε are dependent on Rap1 signaling through the Rap1 effector, KRIT1, which we have previously shown is vital for maintaining endothelial barrier stability. Thus we have described a novel role for PLCε PIP2 hydrolytic and Rap GEF activities in arterial endothelial cells, where PLCε-dependent activation of Rap1/KRIT1 signaling promotes endothelial barrier stability.


Assessing phospholipase A2 activity toward cardiolipin by mass spectrometry.

  • Yuan-Hao Hsu‎ et al.
  • PloS one‎
  • 2013‎

Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and iPLA2, but not for Lp-PLA2. Our results also show that none of these PLA2s have significant PLA1 activities toward dilyso-cardiolipin. To understand the mechanism of cardiolipin hydrolysis by PLA2, we also quantified the release of monolyso-cardiolipin and dilyso-cardiolipin in the PLA2 assays. The sPLA2s caused an accumulation of dilyso-cardiolipin, in contrast to iPLA2 which caused an accumulation of monolyso-cardiolipin. Moreover, cardiolipin inhibits iPLA2 and cPLA2, and activates sPLA2 at low mol fractions in mixed micelles of Triton X-100 with the substrate 1-palmitoyl-2-arachidonyl-sn-phosphtidylcholine. Thus, cardiolipin functions as both a substrate and a regulator of PLA2 activity and the ability to assay the various forms of PLA2 is important in understanding its function.


Monoacylglycerols activate TRPV1--a link between phospholipase C and TRPV1.

  • Peter M Zygmunt‎ et al.
  • PloS one‎
  • 2013‎

Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous "entourage" compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.


Application of pancreatic phospholipase A2 for treatment of bovine mastitis.

  • Eyal Seroussi‎ et al.
  • PloS one‎
  • 2018‎

Recent findings have indicated that secreted phospholipases A2 (sPLA2s) have anti-inflammatory functions, including relief of symptoms in a mouse model of mastitis. This prompted us to investigate the therapeutic application of sPLA2, PLA2G1B, for bovine mastitis. Initial testing of PLA2G1B's effect on bovine mammary epithelial cell (bMEC) line PS revealed no changes in cell viability or cytokine-secretion pattern. However, when cells were first treated with lipopolysaccharide endotoxin (LPS) or live bacteria (Escherichia coli or Staphylococcus aureus), incubation with PLA2G1B significantly improved cell viability, suggesting involvement of sPLA2s in protecting membranes from lipid-peroxidation damage, rather than a bactericidal action. When PLA2G1B was applied simultaneously with LPS, a significant short-term reduction in interleukin-8 secretion was observed compared with bMECs treated only with LPS, supporting previous reports that PLA2G1B affects interleukin-8 signaling in similar cells. Following the favorable outcome of the in vitro experiments, we tested PLA2G1B in vivo by mammary infusion into infected glands. In one of a small sample (n = 4) of lactating cows chronically infected with Streptococcus dysgalactiae, a single PLA2G1B treatment completely cleared inflammation and bacteria, demonstrating its potential to cure subclinical mastitis. PLA2G1B treatment did not affect coagulase-negative staphylococci infection. These types of mastitis may involve formation of a resistant biofilm, and its elimination may relate to sPLA2s' characteristic ability to aggregate with cellular debris, facilitating their internalization by macrophages. In a bovine model of clinical mastitis based on introduction of E. coli via the streak canal, a single mammary infusion of PLA2G1B led to faster recovery to pre-infection milk-yield levels and decrease of somatic cell counts. In this case, all of sPLA2s' modes of resolving inflammation may apply, including competitive binding of the sPLA2s' receptor, the inactivation of which confers resistance to endotoxic shock. Hence, this study strongly supports further research into PLA2G1B as a cure for bovine mastitis.


Elevated phospholipase A2 activities in plasma samples from multiple cancers.

  • Hui Cai‎ et al.
  • PloS one‎
  • 2013‎

Only in recent years have phospholipase A2 enzymes (PLA2s) emerged as cancer targets. In this work, we report the first detection of elevated PLA2 activities in plasma from patients with colorectal, lung, pancreatic, and bladder cancers as compared to healthy controls. Independent sets of clinical plasma samples were obtained from two different sites. The first set was from patients with colorectal cancer (CRC; n = 38) and healthy controls (n = 77). The second set was from patients with lung (n = 95), bladder (n = 31), or pancreatic cancers (n = 38), and healthy controls (n = 79). PLA2 activities were analyzed by a validated quantitative fluorescent assay method and subtype PLA2 activities were defined in the presence of selective inhibitors. The natural PLA2 activity, as well as each subtype of PLA2 activity was elevated in each cancer group as compared to healthy controls. PLA2 activities were increased in late stage vs. early stage cases in CRC. PLA2 activities were not influenced by sex, smoking, alcohol consumption, or body-mass index (BMI). Samples from the two independent sites confirmed the results. Plasma PLA2 activities had approximately 70% specificity and sensitivity to detect cancer. The marker and targeting values of PLA2 activity have been suggested.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: