Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 73 papers

Parathyroid hormone and parathyroid hormone type-1 receptor accelerate myocyte differentiation.

  • Shigemi Kimura‎ et al.
  • Scientific reports‎
  • 2014‎

The ZHTc6-MyoD embryonic stem cell line expresses the myogenic transcriptional factor MyoD under the control of a tetracycline-inducible promoter. Following induction, most of the ZHTc6-MyoD cells differentiate to myotubes. However, a small fraction does not differentiate, instead forming colonies that retain the potential for myocyte differentiation. In our current study, we found that parathyroid hormone type 1 receptor (PTH1R) expression in colony-forming cells at 13 days after differentiation was higher than that in the undifferentiated ZHTc6-MyoD cells. We also found that PTH1R expression was required for myocyte differentiation, and that parathyroid hormone accelerated the differentiation. Our analysis of human and mouse skeletal muscle tissues showed that most cells expressing PTH1R also expressed Pax7 and CD34, which are biomarkers of satellite cells. Furthermore, we found that parathyroid hormone treatment significantly improved muscle weakness in dystrophin-deficient mdx mice. This is the first report indicating that PTH1R and PTH accelerate myocyte differentiation.


The parathyroid hormone regulates skin tumour susceptibility in mice.

  • Kazuhiro Okumura‎ et al.
  • Scientific reports‎
  • 2017‎

Using a forward genetics approach to map loci in a mouse skin cancer model, we previously identified a genetic locus, Skin tumour modifier of MSM 1 (Stmm1) on chromosome 7, conferring strong tumour resistance. Sub-congenic mapping localized Parathyroid hormone (Pth) in Stmm1b. Here, we report that serum intact-PTH (iPTH) and a genetic polymorphism in Pth are important for skin tumour resistance. We identified higher iPTH levels in sera from cancer-resistant MSM/Ms mice compared with susceptible FVB/NJ mice. Therefore, we performed skin carcinogenesis experiments with MSM-BAC transgenic mice (Pth MSM-Tg) and Pth knockout heterozygous mice (Pth +/-). As a result, the higher amounts of iPTH in sera conferred stronger resistance to skin tumours. Furthermore, we found that the coding SNP (rs51104087, Val28Met) localizes in the mouse Pro-PTH encoding region, which is linked to processing efficacy and increased PTH secretion. Finally, we report that PTH increases intracellular calcium in keratinocytes and promotes their terminal differentiation. Taken together, our data suggest that Pth is one of the genes responsible for Stmm1, and serum iPTH could serve as a prevention marker of skin cancer and a target for new therapies.


Parathyroid hormone-producing cells exist in adipose tissues surrounding the parathyroid glands in hemodialysis patients with secondary hyperparathyroidism.

  • Takatoshi Kakuta‎ et al.
  • Scientific reports‎
  • 2020‎

Possible ectopic parathyroid hormone (PTH) production in adipose tissues surrounding hyperplastic parathyroid glands was examined in patients with secondary hyperparathyroidism (SHPT). In vitro culture of adipose tissues from 31 patients excised during parathyroidectomy showed PTH secretion in 23 (74.2%) patients. In vitro PTH secretion was detected in adipose tissues adhered to the parathyroid glands from 22 (71.0%) patients, in not-adhered adipose from 11 (35.5%) and in the thymus from four (28.6%) patients. Immunohistochemistry revealed colonies of PTH- and GCM2-positive cells intricately intertwined with adipocytes in excised adipose tissues prior to culture. When pieces of parathyroid parenchyma from SHPT patients were transplanted into the thyroid of immunodeficient nude rats with induced SHPT, the transplants secreted human PTH for one to three-and-half months after transplantation and expressed adipocyte markers, PPARγ2 and perilipin A, that the transplants did not express prior to transplantation. These findings indicate the importance of thoroughly removing adipose tissues surrounding the parathyroid glands when performing parathyroidectomy. We speculate that these ectopic PTH-producing cells are parathyroid parenchymal cells pushed out from the glands along with adipocyte progenitors during nodular growth of hyperplastic parenchymal cells and that these cells proliferate in SHPT, forming colonies PTH-producing cells intricately intertwined with adipocytes.


Parathyroid hormone and premature thymus ageing in patients with chronic kidney disease.

  • Kenichiro Iio‎ et al.
  • Scientific reports‎
  • 2019‎

Premature immune ageing, including thymic atrophy, is observed in patients with chronic kidney disease (CKD). Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), which are mineral and bone disorder (MBD)-related factors, affect immune cells and possibly cause thymic atrophy. We examined the cross-sectional association between thymic atrophy, evaluated as the number of CD3+CD4+CD45RA+CD31+ cells [recent thymic emigrants (RTE)/μL], and MBD-related factors [(serum PTH, FGF23, and alkaline phosphatase (ALP) level] in 125 patients with non-dialysis dependent CKD. Median estimated glomerular filtration rate (eGFR) was 17 mL/min/1.73 m2. Older age (r = -0.46), male sex (r = -0.34), lower eGFR (r = 0.27), lower serum-corrected calcium (r = 0.27), higher PTH (r = -0.36), and higher ALP level (r = -0.20) were identified as determinants of lower number of RTE. In contrast, serum concentrations of FGF23 and phosphorus were not correlated with RTE. Multivariate non-linear regression analysis indicated a negative association between serum PTH and log-transformed RTE (P = 0.030, P for non-linearity = 0.124). However, the serum levels of FGF23 and ALP were not associated with RTE. In patients with CKD, serum PTH concentrations were related to thymic atrophy which contributes to immune abnormality.


Parathyroid hormone receptor 1 (PTHR1) is a prognostic indicator in canine osteosarcoma.

  • Awf A Al-Khan‎ et al.
  • Scientific reports‎
  • 2020‎

Osteosarcoma (OS) is the most common malignant primary bone tumour in humans and dogs. Several studies have established the vital role of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation and remodeling. In addition, these molecules play a role in the progression and metastasis of many human tumour types. This study investigated the expression of PTHR1 and PTHrP in canine OS tissues and assessed their prognostic value. Formalin-fixed, paraffin-embedded tissue samples from 50 dogs diagnosed with primary OS were immunolabeled with antibodies specific for PTHR1 and PTHrP. The immunostaining intensity of tumours from patients with OS was correlated with survival time. Both PTHR1 and PTHrP were detected in all OS samples (n = 50). Dogs with OS tumours showing high immunostaining intensity for PTHR1 (n = 36) had significantly shorter survival times (p = 0.028, Log Rank; p = 0.04, Cox regression) when compared with OS that had low immunostaining intensity for PTHR1 (n = 14).PTHrP immunostaining intensity did not correlate with survival time (p > 0.05). The results of this study indicate that increased expression of PTHR1 antigen in canine OS is associated with poor prognosis. This suggests that PTHR1 may be useful as a prognostic indicator in canine OS.


Small Molecule Inhibited Parathyroid Hormone Mediated cAMP Response by N-Terminal Peptide Binding.

  • Amit Kumar‎ et al.
  • Scientific reports‎
  • 2016‎

Ligand binding to certain classes of G protein coupled receptors (GPCRs) stimulates the rapid synthesis of cAMP through G protein. Human parathyroid hormone (PTH), a member of class B GPCRs, binds to its receptor via its N-terminal domain, thereby activating the pathway to this secondary messenger inside cells. Presently, GPCRs are the target of many pharmaceuticals however, these drugs target only a small fraction of structurally known GPCRs (about 10%). Coordination complexes are gaining interest due to their wide applications in the medicinal field. In the present studies we explored the potential of a coordination complex of Zn(II) and anthracenyl-terpyridine as a modulator of the parathyroid hormone response. Preferential interactions at the N-terminal domain of the peptide hormone were manifested by suppressed cAMP generation inside the cells. These observations contribute a regulatory component to the current GPCR-cAMP paradigm, where not the receptor itself, but the activating hormone is a target. To our knowledge, this is the first report about a coordination complex modulating GPCR activity at the level of deactivating its agonist. Developing such molecules might help in the control of pathogenic PTH function such as hyperparathyroidism, where control of excess hormonal activity is essentially required.


Production and evaluation of parathyroid hormone receptor1 ligands with intrinsic or assembled peroxidase domains.

  • Xavier Charest-Morin‎ et al.
  • Scientific reports‎
  • 2017‎

Parathyroid hormone (PTH) can be C-terminally extended without significant affinity loss for the PTH1 receptor (PTHR1). We developed fusion protein ligands with enzymatic activity to probe PTHR1s at the cell surface. Two fusion proteins were generated by linking PTH to the N-terminus of either horseradish peroxidase (PTH-HRP) or the genetically modified soybean peroxidase APEX2 (PTH-APEX2). Alternatively, myc-tagged PTH (PTH-myc) was combined with antibodies, some of which HRP-conjugated, in the extracellular fluid. The three PTH-fusion proteins were produced as conditioned mediums (CM) by transfected producer HEK 293a cells. Binding of receptor-bound enzymatic ligands was revealed using widely available substrate/co-substrate systems. The stimulation of recipient HEK 293a expressing PTHR1s with the PTH-myc/antibodies combination or with PTH-APEX2 supported the histochemical or luminescent detection of recombinant PTHR1s (TrueBlueTM or luminol-based reagent). The PTH-HRP construction was the most sensitive and supported all tested peroxidase co-substrates (TrueBlueTM, tetramethylbenzidine (TMB), luminol, biotin-phenol with streptavidin-Qdots); the 3 latter schemes identified endogenous PTHR1 in the osteoblastic HOS cell line. The specificity of the fusion protein binding to PTHR1 was determined by its competition with an excess of PTH1-34. Bifunctional ligands possessing enzymatic activity detect intact receptors with various possible applications, including the screening of drugs that compete for receptor binding.


Misdiagnosis of chronic kidney disease and parathyroid hormone testing during the past 16 years.

  • Haojie Liu‎ et al.
  • Scientific reports‎
  • 2023‎

Chronic kidney disease (CKD) is a prevalent pathological condition worldwide. Parathyroid hormone (PTH) is an important index related to bone metabolism in CKD patients and has not received enough attention. This study was performed to investigate the incidence and diagnostic rate of CKDin hospital as well as PTH testing and treatment for secondary hyperparathyroidism (SHPT) in patients with stage 3 to 5 CKD. The data of patients who visited Zhejiang Provincial People's Hospital from February 2006 to April 2022 were retrieved from the hospital database. All data were divided into three subgroups using PTH testing and SHPT treatment as major comparative indicators for analysis. The data were then analyzed for overall PTH testing, CKD incidence, and diagnostic rate. Among 5,301,391 patients, the incidence of CKD was 13.14%. The missed diagnosis rate for CKD was 65.76%. The total PTH testing rate was 1.22%, of which 15.37% of PTH testing was performed in patients with stage 3 to 5 CKD. The overall diagnosis rate of SHPT in patients with stage 3 to 5 CKD was 31.0%. The prophylactic medication rate was 7.4%, and the rate of post-diagnostic drug therapy was 22.2% in patients who underwent SHPT treatment. The high misdiagnosis rate and low PTH testing rate of CKD requires prompt attention from clinicians. SHPT treatment should be considered especially in patients with stage 3 to 5 CKD.


Parathyroid Hormone-Like Hormone is a Poor Prognosis Marker of Head and Neck Cancer and Promotes Cell Growth via RUNX2 Regulation.

  • Wei-Min Chang‎ et al.
  • Scientific reports‎
  • 2017‎

Parathyroid Hormone-Like Hormone (PTHLH) is an autocrine/paracrine ligand that is up-regulated in head and neck squamous cell carcinoma (HNSCC). However, the cellular function and regulatory mechanism in HNSCC remains obscure. We investigated the clinical significance of PTHLH in HNSCC patients, and verified the role of RUNX2/PTHLH axis, which is stimulated HNSCC cell growth. In patients, PTHLH is a poor prognosis marker. PTHLH expression lead to increasing the cell proliferation potential through an autocrine/paracrine role and elevating blood calcium level in Nod-SCID mice. In public HNSCC microarray cohorts, PTHLH is found to be co-expressed with RUNX2. Physiologically, PTHLH is regulated by RUNX2 and also acting as key calcium regulator. However, elevations of calcium concentration also increased the RUNX2 expression. PTHLH, calcium, and RUNX2 form a positive feedback loop in HNSCC. Furthermore, ectopic RUNX2 expression also increased PTHLH expression and promoted proliferation potential through PTHLH expression. Using cDNA microarray analysis, we found PTHLH also stimulated expression of cell cycle regulators, namely CCNA2, CCNE2, and CDC25A in HNSCC cells, and these genes are also up-regulated in HNSCC patients. In summary, our results reveal that PTHLH expression is a poor prognosis marker in HNSCC patients, and RUNX2-PTHLH axis contributes to HNSCC tumor growth.


Establish pre-clinical diagnostic efficacy for parathyroid hormone as a point-of-surgery-testing-device (POST).

  • Ambalika S Tanak‎ et al.
  • Scientific reports‎
  • 2020‎

Measuring the Parathyroid hormone (PTH) levels assists in the investigation and management of patients with parathyroid disorders. Rapid PTH monitoring is a valid tool for accurate assessment intraoperatively. Rapid Electro-Analytical Device (READ) is a point-of-care device that uses impedance change between target and capture probe to assess the PTH concentration in undiluted patient plasma samples. The aim of this work focuses on evaluating the analytical performance of READ platform to Roche analyzer as a prospective clinical validation method. The coefficient of variation (CV) for intra-assay imprecision was < 5% and inter-assay imprecision CV was < 10% for high (942 pg/mL) and low (38.2 pg/mL) PTH concentration. Functional sensitivity defined at 15% CV was 1.9 pg/mL. Results obtained from READ platform correlated well (r = 0.99) with commercially available clinical laboratory method (Roche Diagnostics) to measure PTH concentrations with a turn-around time of less than 15 min. Furthermore, the mean bias of 7.6 pg/mL determined by Bland-Altman analysis, showed good agreement between the two methods. We envision such a sensing system would allow medical practitioners to facilitate targeted interventions, thereby, offering an immediate prognostic approach as the cornerstone to delivering successful treatment for patients suffering from primary hyperparathyroidism.


Gender specific association of parathyroid hormone and vitamin D with metabolic syndrome in population with preserved renal function.

  • Min-Hee Kim‎ et al.
  • Scientific reports‎
  • 2018‎

The association of parathyroid hormone (PTH) and vitamin D with Metabolic syndrome (MetS) was evaluated using representative data from the Korean population. Data from 7004 subjects aged 50 or older with preserved renal function (excluding chronic kidney disease stage 3b to 5) who were included in the Korean National Health and Nutrition Examination Survey between 2008 and 2010 were analysed. Higher PTH levels (pg/ml) were observed in subjects with MetS than in those without MetS among both genders (60.1 (58.6-61.6) vs. 62.4 (60.7-64.2) in males p = 0.018, 60.7 (59.4-62.1) vs. 63.9 (62.4-65.6) in females, p < 0.001). For females, PTH levels were significantly higher in subjects with MetS than in those without MetS after adjustment for possible covariates. Lower 25(OH)D levels were significantly associated with MetS only in male subjects (p = 0.004). As the number of MetS components increased, a significant rise in PTH levels (p for trend 0.005 in males and 0.024 in females) and a decrease in 25(OH)D levels (p for trend < 0.001 in males and 0.053 in females) were observed. In conclusion, among subjects with preserved renal function, PTH levels were possibly associated with MetS in females, whereas vitamin D levels exhibited a possible link to MetS in males.


Oestrogen and parathyroid hormone alleviate lumbar intervertebral disc degeneration in ovariectomized rats and enhance Wnt/β-catenin pathway activity.

  • Haobo Jia‎ et al.
  • Scientific reports‎
  • 2016‎

To investigate the mitigation effect and mechanism of oestrogen and PTH on disc degeneration in rats after ovariectomy, as well as on Wnt/β-catenin pathway activity, thirty 3-month-old rats were ovariectomized and divided into three groups. Ten additional rats were used as controls. Eight weeks later, the rats were administered oestrogen or PTH for 12 weeks, and then discs were collected for tests. Results showed that nucleus pulposus cells in the Sham group were mostly notochord cells, while in the OVX group, cells gradually developed into chondrocyte-like cells. Oestrogen or PTH could partly recover the notochord cell number. After ovariectomy, the endplate roughened and endplate porosity decreased. After oestrogen or PTH treatment, the smoothness and porosity of endplate recovered. Compared with the Sham group, Aggrecan, Col2a and Wnt/β-catenin pathway expression in OVX group decreased, and either oestrogen or PTH treatment improved their expression. The biomechanical properties of intervertebral disc significantly changed after ovariectomy, and oestrogen or PTH treatment partly recovered them. Disc degeneration occurred with low oestrogen, and the underlying mechanisms involve nutrition supply disorders, cell type changes and decreased Wnt/β-catenin pathway activity. Oestrogen and PTH can retard disc degeneration in OVX rats and enhance Wnt/β-catenin pathway activity in nucleus pulposus.


Intermittent parathyroid hormone 1-34 induces oxidation and deterioration of mineral and collagen quality in newly formed mandibular bone.

  • Yohsuke Yoshioka‎ et al.
  • Scientific reports‎
  • 2019‎

Intermittent parathyroid hormone (PTH) administration is known to promote bone healing after surgical procedures. However, the mechanism and influence of PTH on the mineral and collagen quality of the jaw are not well understood. Most studies have focused on analyzing the bone density and microstructure of the mandible, and have insufficiently investigated its mineral and collagen quality. Oxidative stress activates osteoclasts, produces advanced glycation end products, and worsens mineral and collagen quality. We hypothesized that PTH induces oxidation and affects the mineral and collagen quality of newly formed mandibular bone. To test this, we examined the mineral and collagen quality of newly formed mandibular bone in rats administered PTH, and analyzed serum after intermittent PTH administration to examine the degree of oxidation. PTH administration reduced mineralization and worsened mineral and collagen quality in newly formed bone. In addition, total anti-oxidant capacity in serum was significantly decreased and the oxidative-INDEX was increased among PTH-treated compared to vehicle-treated rats, indicating serum oxidation. In conclusion, intermittent administration of PTH reduced mineral and collagen quality in newly formed mandibular bone. This effect may have been induced by oxidation.


Effects of stepwise administration of osteoprotegerin and parathyroid hormone-related peptide DNA vectors on bone formation in ovariectomized rat model.

  • Ye Ji Eom‎ et al.
  • Scientific reports‎
  • 2024‎

Osteoporosis is a metabolic bone disease that impairs bone mineral density, microarchitecture, and strength. It requires continuous management, and further research into new treatment options is necessary. Osteoprotegerin (OPG) inhibits bone resorption and osteoclast activity. The objective of this study was to investigate the effects of stepwise administration of OPG-encoded minicircles (mcOPG) and a bone formation regulator, parathyroid hormone-related peptide (PTHrP)-encoded minicircles (mcPTHrP) in osteoporosis. The combined treatment with mcOPG and mcPTHrP significantly increased osteogenic marker expression in osteoblast differentiation compared with the single treatment groups. A model of postmenopausal osteoporosis was established in 12-week-old female rats through ovariectomy (OVX). After 8 weeks of OVX, mcOPG (80 µg/kg) was administered via intravenous injection. After 16 weeks of OVX, mcPTHrP (80 µg/kg) was injected once a week for 3 weeks. The bone microstructure in the femur was evaluated 24 weeks after OVX using micro-CT. In a proof-of-concept study, stepwise treatment with mcOPG and mcPTHrP on an OVX rat model significantly improved bone microstructure compared to treatment with mcOPG or mcPTHrP alone. These results suggest that stepwise treatment with mcOPG and mcPTHrP may be a potential treatment for osteoporosis.


Peptide hormone sensors using human hormone receptor-carrying nanovesicles and graphene FETs.

  • Sae Ryun Ahn‎ et al.
  • Scientific reports‎
  • 2020‎

Hormones within very low levels regulate and control the activity of specific cells and organs of the human body. Hormone imbalance can cause many diseases. Therefore, hormone detection tools have been developed, particularly over the last decade. Peptide hormones have a short half-life, so it is important to detect them within a short time. In this study, we report two types of peptide hormone sensors using human hormone receptor-carrying nanovesicles and graphene field-effect transistors (FETs). Parathyroid hormone (PTH) and glucagon (GCG) are peptide hormones present in human blood that act as ligands to G protein-coupled receptors (GPCRs). In this paper, the parathyroid hormone receptor (PTHR) and the glucagon receptor (GCGR) were expressed in human embryonic kidney-293 (HEK-293) cells, and were constructed as nanovesicles carrying the respective receptors. They were then immobilized onto graphene-based FETs. The two hormone sensors developed were able to detect each target hormone with high sensitivity (ca. 100 fM of PTH and 1 pM of GCG). Also, the sensors accurately recognized target hormones among different types of peptide hormones. In the development of hormone detection tools, this approach, using human hormone receptor-carrying nanovesicles and graphene FETs, offers the possibility of detecting very low concentrations of hormones in real-time.


Machine learning-based prediction models for parathyroid carcinoma using pre-surgery cognitive function and clinical features.

  • Yuting Wang‎ et al.
  • Scientific reports‎
  • 2023‎

Patients with parathyroid carcinoma (PC) are often diagnosed postoperatively, due to incomplete resection during the initial surgery, resulting in poor outcomes. The aim of our study was to investigate the pre-surgery indicators of PC and try to develop a predictive model for PC utilizing machine learning. Evaluation of pre-surgery neuropsychological function and confirmation of pathology were carried out in 133 patients with primary hyperparathyroidism in Beijing Chaoyang Hospital from December 2019 to January 2023. Patients were randomly divided into a training cohort (n = 93) and a validating cohort (n = 40). Analysis of the clinical dataset, two machine learning including the extreme gradient boosting (XGBoost) and the least absolute shrinkage and selection operator (LASSO) regression were utilized to develop the prediction model for PC. Logistic regression analysis was also conducted for comparison. Significant differences in elevated parathyroid hormone and decreased serum phosphorus in PC compared to (BP). The lower score of MMSE and MOCA was observed in PC and a cutoff of MMSE < 24 was the optimal threshold to stratify PC from BP (area under the curve AUC 0.699 vs 0.625). The predicted probability of PC by machine learning was similar to the observed probability in the test set, whereas the logistic model tended to overpredict the possibility of PC. The XGBoost model attained a higher AUC than the logistic algorithms and LASSO models. (0.835 vs 0.683 vs 0.607). Preoperative cognitive function may be a probable predictor for PC. The cognitive function-based prediction model based on the XGBoost algorithm outperformed LASSO and logistic regression, providing valuable preoperative assistance to surgeons in clinical decision-making for patients suspected PC.


Persistent fibroblast growth factor 23 signalling in the parathyroid glands for secondary hyperparathyroidism in mice with chronic kidney disease.

  • Kazuki Kawakami‎ et al.
  • Scientific reports‎
  • 2017‎

Secondary hyperparathyroidism, in which parathyroid hormone (PTH) is excessively secreted in response to factors such as hyperphosphataemia, hypocalcaemia, and low 1,25-dihydroxyvitamin D (1,25(OH)2D) levels, is commonly observed in patients with chronic kidney disease (CKD), and is accompanied by high levels of fibroblast growth factor 23 (FGF23). However, the effect of FGF23 on the parathyroid glands (PG) remains controversial. To bind to FGF receptors, FGF23 requires αKlotho, which is highly expressed in the PG. Here, we examined the effects of Fgfr1-3, αKlotho, or Fgfr1-4 ablation specifically in the PG (conditional knockout, cKO). When mice with early to mid-stage CKD with and without cKO were compared, plasma concentrations of calcium, phosphate, FGF23, and 1,25(OH)2D did not change significantly. In contrast, plasma PTH levels, which were elevated in CKD mice, were significantly decreased in cKO mice. PG from CKD mice showed augmentation of cell proliferation, which was significantly suppressed by cKO. Parathyroid tissue cultured for 4 days showed upregulation of PTH secretion and cell proliferation in response to FGF23. Both these effects were inhibited by cKO. These findings suggest that FGF23 is a long-term inducer of parathyroid cell proliferation and PTH secretion, and is one cause of secondary hyperparathyroidism in CKD.


Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis.

  • Masahiro Yoshikawa‎ et al.
  • Scientific reports‎
  • 2018‎

Hypercalcemia and hyperparathyroidism in patients receiving maintenance hemodialysis (MHD) can cause the progression of cardiovascular diseases (CVD) and mineral bone disorders (MBD). The KDIGO recommends the dialysates with a calcium (Ca) concentration of 1.25-1.5 mmol/L for MHD treatments, but the optimal concentration remains controversial. Here, we conducted a systematic review and a meta-analysis of seven randomized controlled trials examining a total of 622 patients to investigate the optimal concentration for MHD for 6 months or longer. The dialysates with a low Ca concentration (1.125 or 1.25 mmol/L) significantly lowered the serum Ca and raised the intact parathyroid hormone levels by 0.52 mg/dL (95% confidence interval, 0.20-0.85) and 39.59 pg/mL (14.80-64.38), respectively, compared with a high Ca concentration (1.50 or 1.75 mmol/L). Three studies showed that a low concentration was preferred for lowering arterial calcifications or atherosclerosis in different arteries, but one study showed that coronary arterial calcifications increased with a low concentration. Two studies showed contradictory outcomes in terms of MBD. Our meta-analysis showed that a dialysate with a low Ca concentration lowered the serum Ca levels in patients receiving long-term MHD, but further studies are needed to determine the optimal Ca concentration in terms of CVD and MBD.


Paraoxonase 1 concerning dyslipidaemia, cardiovascular diseases, and mortality in haemodialysis patients.

  • Alicja E Grzegorzewska‎ et al.
  • Scientific reports‎
  • 2021‎

Paraoxonase 1 (PON1) is known for preventing atherosclerosis through lipid-modifying features, antioxidant activity, anti-inflammatory, anti-apoptosis, anti-thrombosis, and anti-adhesion properties. Uremic patients requiring haemodialysis (HD) are especially prone to atherosclerosis and its complications. We analysed the PON1 gene (PON1) polymorphisms and serum PON1 (paraoxonase) activity concerning dyslipidaemia and related cardiovascular diseases and mortality to show how they associate under uremic conditions modified by maintenance HD treatment. The rs662 AA + AG (OR 1.76, 95%CI 1.10-2.80, P = 0.018), rs854560 TT (OR 1.48, 95%CI 1.04-2.11, P = 0.031), and rs854560 AT + TT (OR 1.28, 95%CI 1.01-1.63, P = 0.040) contributed to the prevalence of atherogenic dyslipidaemia diagnosed by the triglyceride (TG)/HDL-cholesterol ratio ≥ 3.8. The normalized serum PON1 activity positively correlated with atherogenic dyslipidaemia (ẞ 0.67 ± 0.25, P = 0.008). The PON1 rs854560 allele T was involved in the higher prevalence of ischemic cerebral stroke (OR 1.38, 1.02-1.85, P = 0.034). The PON1 rs705379 TT genotype contributed to cardiovascular (HR 1.27, 95% CI 1.03-1.57, P = 0.025) and cardiac (HR 1.34, 95% CI 1.05-1.71, P = 0.018) mortality. All P-values were obtained in multiple regression analyses, including clinical variables. Multifaceted associations of PON1 with dyslipidaemia, ischemic cerebral stroke, and cardiovascular mortality in HD patients provide arguments for the consideration of PON1 and its protein product as therapeutic targets in the prevention of atherosclerosis and its complications in uremic patients.


Vitamin D oral intermittent treatment (DO IT) study, a randomized clinical trial with individual loading regimen.

  • Jean-Pierre Rothen‎ et al.
  • Scientific reports‎
  • 2021‎

Comparison of several regimens of oral vitamin D including an individually calculated loading regimen with the aim of achieving serum values > 75 nmol/l. Interventional, randomized, 3-arm study in vitamin D-deficient outpatients. Participants were allocated to supplementation of 24,000 IU vitamin D monthly over three months, using either a monthly drinking solution (Vi-De 3) or capsule (D3 VitaCaps), or an individualized loading regimen with the capsules taken weekly. For the loading regimen, the cumulative dose was calculated according to baseline 25-hydroxy-vitamin D (25(OH)D) serum value and body weight. Main inclusion criteria were age ≥ 18 years and 25(OH)D serum concentration < 50 nmol/l. The primary outcome was 25(OH)D serum concentration one week after treatment termination. Secondary endpoints were patient's preferences and adverse events. Full datasets were obtained from 52 patients. Mean 25(OH)D values were statistically significant higher after a loading regimen compared to a monthly administration of 24,000 IU vitamin D (76.4 ± 15.8 vs 61.4 ± 10.8 nmol/l; p < 0.01). All patients treated with the loading regimen reached sufficient 25(OH)D values > 50 nmol/l. Serum 25(OH)D values > 75 nmol/l were observed more frequently in patients taking the loading regimen (47% vs 11% drinking solution vs 12% capsules). Vitamin D-related adverse effects did not occur in any treatment groups. Capsules were preferred by 88.5% of the patients. Compared to treatments with monthly intake of 24,000 IU vitamin D, the intake of an individually calculated weekly loading regimen was able to raise serum concentrations > 50 nmol/l in all cases within a safe range.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: