Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,381 papers

Parathyroid hormone and parathyroid hormone type-1 receptor accelerate myocyte differentiation.

  • Shigemi Kimura‎ et al.
  • Scientific reports‎
  • 2014‎

The ZHTc6-MyoD embryonic stem cell line expresses the myogenic transcriptional factor MyoD under the control of a tetracycline-inducible promoter. Following induction, most of the ZHTc6-MyoD cells differentiate to myotubes. However, a small fraction does not differentiate, instead forming colonies that retain the potential for myocyte differentiation. In our current study, we found that parathyroid hormone type 1 receptor (PTH1R) expression in colony-forming cells at 13 days after differentiation was higher than that in the undifferentiated ZHTc6-MyoD cells. We also found that PTH1R expression was required for myocyte differentiation, and that parathyroid hormone accelerated the differentiation. Our analysis of human and mouse skeletal muscle tissues showed that most cells expressing PTH1R also expressed Pax7 and CD34, which are biomarkers of satellite cells. Furthermore, we found that parathyroid hormone treatment significantly improved muscle weakness in dystrophin-deficient mdx mice. This is the first report indicating that PTH1R and PTH accelerate myocyte differentiation.


Short carboxyl terminal parathyroid hormone peptides modulate human parathyroid hormone signaling in mouse osteoblasts.

  • Kittrawee Kritmetapak‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Novel human parathyroid hormone (hPTH) peptides of unknown biological activity have recently been identified in the serum of subjects with normal renal function, chronic renal failure, and end-stage renal disease through the application of liquid chromatography-high resolution mass spectrometry.


Inhibition of parathyroid hormone secretion by caffeine in human parathyroid cells.

  • Ming Lu‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2013‎

Caffeine is a highly consumed psychoactive substance present in our daily drinks. Independent studies have reported associations between caffeine consumption, low bone mineral density, and urinary calcium loss, as well as impaired bone development in vitro and in vivo. Calcium (Ca(2+)), vitamin D, and PTH are critical regulators of bone remodeling. A possible association between caffeine and parathyroid gland function has been suggested in the literature.


Parathyroid carcinoma survival: improvements in the era of intact parathyroid hormone monitoring?

  • Miya E Allen‎ et al.
  • Rare tumors‎
  • 2013‎

The intact parathyroid hormone (iPTH) assay is a critical test in the diagnosis and management of PTH-mediated hypercalcemia, including parathyroid carcinoma (PCa). We hypothesized that the survival of patients diagnosed with PCa has improved since adoption of the iPTH assay into clinical practice. We identified all confirmed cases of PCa within the Surveillance, Epidemiology and End Results database from 1973 to 2006. Patients were categorized into two eras based upon introduction of the iPTH assay: 1973 to 1997 (era I) and 1997 to 2006 (era II, when the iPTH assay was in standard use). We estimated overall survival (OS) and disease-specific survival (DSS) using the Kaplan-Meier method, with differences among survival curves assessed via log rank. Multivariate Cox proportional hazards models compared the survival rates between treatment eras while controlling for patient age, sex, race/ethnicity, tumor size, nodal status, extent of disease, and type of surgery. Multivariate models included patients undergoing potentially curative surgery and excluded those with distant metastases. Risks of overall and disease-specific mortality were reported as hazard ratios with 95% confidence intervals. Study criteria were met by 370 patients. Median survival was 15.6 years. Five-year rates of OS and DSS were 78% and 88% for era I and 82% and 96% for era II. On multivariate analysis, age, black race, and unknown extent of disease predicted an increased risk of death from any cause. Treatment era did not predict OS. No factor predicted PCa-specific mortality. In multivariate analysis, neither OS nor DSS have improved in the current era that utilizes iPTH for the detection and management of PCa.


Proliferation of parathyroid cells negatively correlates with expression of parathyroid hormone-related protein in secondary parathyroid hyperplasia.

  • H Matsushita‎ et al.
  • Kidney international‎
  • 1999‎

Parathyroid hormone-related protein (PTHrP) is now suspected to act as an autocrine or paracrine regulator of cell growth or differentiation, although it was originally reported as a hypercalcemic substance in malignancies. This study was performed to assess the relationship between PTHrP expression and cell proliferation in human parathyroid glands.


Parathyroid hormone suppresses insulin signaling in adipocytes.

  • Eugene Chang‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

Previous reports suggest that parathyroid hormone (PTH) is associated with insulin resistance. This research investigated the effects of PTH on insulin signaling in differentiated 3T3-L1 adipocytes. PTH (10 nM, 24 h) treatment induced a reduction in insulin-stimulated glucose uptake, AKT activity (phosphorylated AKT/total AKT protein expression) and a decrease in GLUT4 and IRS-1 protein expression compared to vehicle treated controls in differentiated adipocytes. PTH treatment also induced increased phosphorylation of IRS-1 on serine 307, which suppresses insulin signaling. In addition, treatment of cells with adenyl cyclase inhibitor SQ52236 ameliorated the effects of PTH on insulin-stimulated glucose uptake, whereas inhibition of phospholipase C alpha (U73122) did not significantly alter the effects of PTH. Thus, PTH treatment of differentiated 3T3-L1 adipocytes suppresses insulin-stimulated glucose uptake and insulin signaling via cAMP pathway, potentially through the phosphorylation of IRS-1 at serine 307.


SIKs control osteocyte responses to parathyroid hormone.

  • Marc N Wein‎ et al.
  • Nature communications‎
  • 2016‎

Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.


Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.

  • Yanmei Yang‎ et al.
  • Molecular biology of the cell‎
  • 2017‎

The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases.


Use of intraoperative parathyroid hormone measurements during parathyroidectomy to predict postoperative parathyroid hormone levels in patients with renal hyperparathyroidism: meta-analysis.

  • Dirk-Jan van Beek‎ et al.
  • BJS open‎
  • 2022‎

Several studies have reported on the use of intraoperative parathyroid hormone (ioPTH) measurements during parathyroidectomy (PTX) for renal hyperparathyroidism (rHPT), but there is no consensus on whether it is helpful and, if so, what protocol should be used. Therefore, the literature was systematically reviewed to assess a correlation between ioPTH and early postoperative parathyroid hormone (PTH) levels in patients undergoing PTX for rHPT, separately for those on dialysis and those with a functioning renal transplant.


The roles of parathyroid hormone-like hormone during mouse preimplantation embryonic development.

  • Lei Guo‎ et al.
  • PloS one‎
  • 2012‎

Parathyroid hormone-like hormone (PTHLH) was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcemia in malignancies in the 1980s. Previous studies demonstrated that PTHLH is expressed in multiple tissues and is an important regulator of cellular and organ growth, development, migration, differentiation, and survival. However, there is a lack of data on the expression and function of PTHLH during preimplantation embryonic development. In this study, we investigated the expression characteristics and functions of PTHLH during mouse preimplantation embryonic development. The results show that Pthlh is expressed in mouse oocytes and preimplantation embryos at all developmental stages, with the highest expression at the MII stage of the oocytes and the lowest expression at the blastocyst stage of the preimplantation embryos. The siRNA-mediated depletion of Pthlh at the MII stage oocytes or the 1-cell stage embryos significantly decreased the blastocyst formation rate, while this effect could be corrected by culturing the Pthlh depleted embryos in the medium containing PTHLH protein. Moreover, expression of the pluripotency-related genes Nanog and Pou5f1 was significantly reduced in Pthlh-depleted embryos at the morula stage. Additionally, histone acetylation patterns were altered by Pthlh depletion. These results suggest that PTHLH plays important roles during mouse preimplantation embryonic development.


Intraoperative Parathyroid Hormone Monitoring in Guiding Adequate Parathyroidectomy.

  • Aabid Hassan Naik‎ et al.
  • Indian journal of endocrinology and metabolism‎
  • 2018‎

Parathyroidectomy has been traditionally performed through bilateral neck exploration (BNE). However, with the use of intraoperative parathyroid hormone (IOPTH) assay along with preoperative localization studies, focused parathyroidectomy can be performed with good surgical success rate, multiglandular disease can be predicted, and hence recurrence and surgical failure can be prevented. Furthermore, it predicts eucalcemia in the postoperative period. The aim of this study was to evaluate the usefulness of IOPTH assay in guiding adequate parathyroidectomy in patients of primary hyperparathyroidism.


Development of Surgically Transplantable Parathyroid Hormone-Releasing Microbeads.

  • Ha Yeong Kim‎ et al.
  • Biomedicines‎
  • 2022‎

Hypoparathyroidism is an endocrine disorder that occurs because of the inability to produce parathyroid hormone (PTH) effectively. Previously, we reported the efficacy of tonsil-derived mesenchymal stem cells (TMSCs) differentiated into parathyroid-like cells for the treatment of hypoparathyroidism. Here, we investigated the feasibility of three-dimensional structural microbeads fabricated with TMSCs and alginate, a natural biodegradable polymer, to treat hypoparathyroidism. Alginate microbeads were fabricated by dropping a 2% (w/v) alginate solution containing TMSCs into a 5% CaCl2 solution and then differentiated into parathyroid-like cells using activin A and sonic hedgehog for 7 days. The protein expression of PTH, a specific marker of the parathyroid gland, was significantly higher in differentiated alginate microbeads with TMSCs (Al-dT) compared with in undifferentiated alginate microbeads with TMSCs. For in vivo experiments, we created the hypoparathyroidism animal model by parathyroidectomy (PTX) and implanted alginate microbeads in the dorsal interscapular region. The PTX rats with Al-dT (PTX+Al-dT) showed the highest survival rate and weight change and a gradual increase in serum intact PTH levels. We also detected a higher expression of PTH in retrieved tissues of PTX+Al-dT using immunofluorescence analysis. This study demonstrates that alginate microbeads are potential a new tool as a surgically scalable therapy for treating hypoparathyroidism.


Histone methyltransferase SET domain bifurcated 1 negatively regulates parathyroid hormone/parathyroid hormone-related peptide receptor to control chondrocyte proliferation in Meckel's cartilage.

  • Phyo Thiha‎ et al.
  • Archives of oral biology‎
  • 2021‎

The aim of this study is to show that the proliferation of chondrocytes is regulated by SET domain bifurcated 1 (SETDB1) along with the downregulation of parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor in Meckel's cartilage.


Role of intraoperative parathyroid hormone in guiding parathyroidectomy.

  • Chirag Pereira‎
  • Acta bio-medica : Atenei Parmensis‎
  • 2023‎

The aim of the study was to determine the sensitivity, specificity and diagnostic accuracy of intra-operative parathyroid hormone (IOPTH) in patients undergoing surgery for primary hyperparathyroidism based on Miami criteria.


Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration.

  • Maria E Rodríguez-Ortiz‎ et al.
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association‎
  • 2014‎

The interest on magnesium (Mg) has grown since clinical studies have shown the efficacy of Mg-containing phosphate binders. However, some concern has arisen for the potential effect of increased serum Mg on parathyroid hormone (PTH) secretion. Our objective was to evaluate the direct effect of Mg in the regulation of the parathyroid function; specifically, PTH secretion and the expression of parathyroid cell receptors: CaR, the vitamin D receptor (VDR) and FGFR1/Klotho.


Effects of Intermittent Administration of Parathyroid Hormone and Parathyroid Hormone-Related Protein on Fracture Healing: A Narrative Review of Animal and Human Studies.

  • Junro Yamashita‎ et al.
  • JBMR plus‎
  • 2019‎

Intermittent administration of parathyroid hormone (PTH) stimulates skeletal remodeling and is a potent anabolic agent in bone. PTH-related protein (PTHrP) is anabolic acting on the same PTH1 receptor and is in therapeutic use for osteoporosis. The body of literature for PTH actions in fracture healing is emerging with promising yet not entirely consistent results. The objective of this review was to perform a literature analysis to extract up-to-date knowledge on the effects of intermittent PTH and PTHrP therapy in bone fracture healing. A literature search of the PubMed database was performed. Clinical case studies and articles related to "regeneration," "implant," and "distraction osteogenesis" were excluded. A narrative review was performed to deliberate the therapeutic potential of intermittent PTH administration on fracture healing. A smaller number of studies centered on the use of PTHrP or a PTHrP analog were also reviewed. Animal studies clearly show that intermittent PTH therapy promotes fracture healing and revealed the strong therapeutic potential of PTH. Human subject studies were fewer and not as consistent as the animal studies yet provide insight into the potential of intermittent PTH administration on fracture healing. Differences in outcomes for animal and human studies appear to be attributed partly to variable doses, fracture sites, age, remodeling patterns, and bone architectures, although other factors are involved. Future studies to examine the dose, timing, and duration of PTH administration will be necessary to further delineate the therapeutic potential of PTH for fracture healing in humans. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.


Two-site immunoradiometric intact parathyroid hormone assay versus C-terminal parathyroid hormone in predicting osteodystrophic bone lesions in predialysis chronic renal failure.

  • G Coen‎ et al.
  • The Journal of laboratory and clinical medicine‎
  • 1993‎

Intact parathyroid hormone (iPTH) radioimmunoassay represents an important advancement in the measurement of serum PTH levels, permitting the evaluation of the actual rate of secretion of the parathyroid glands. The aim of the study was to compare the value of intact and C-terminal PTH measurements in predicting the osteodystrophic bone lesion in predialysis patients with chronic renal failure (CRF). We have studied 37 subjects with CRF who were receiving conservative treatment. In each subject a transiliac bone biopsy for histomorphometric examination was performed in addition to the assay of serum intact and C-terminal PTH, osteocalcin, and alkaline phosphatase. Serum C-terminal and intact PTH levels were closely correlated, both showing a high degree of correlation with serum osteocalcin. Similar degrees of correlation were observed between the two PTH assays and the histologic parameters osteoblastic surface (ObS/BS) and osteoclastic surface (OcS/BS). The evaluation of specificity and sensitivity of the two PTH assays in selecting patients with normal or pathologic histomorphometric parameters gave an equivalent number of false positive and negative cases. Based on discriminant analysis of histomorphometric parameters, intact PTH shows a higher discriminant power when compared with C-terminal PTH assay for the parameters OcS/BS and eroded surface (ES/BS), but without practical clinical value. In conclusion, in analogy to the short lived N-terminal PTH fragment assay, prediction of elementary hyperparathyroid bone lesions in predialysis CRF is not improved by the use of intact PTH as compared to the more traditional C-terminal assay.


An optogenetic approach for regulating human parathyroid hormone secretion.

  • Yunhui Liu‎ et al.
  • Nature communications‎
  • 2022‎

Parathyroid hormone (PTH) plays crucial role in maintaining calcium and phosphorus homeostasis. In the progression of secondary hyperparathyroidism (SHPT), expression of calcium-sensing receptors (CaSR) in the parathyroid gland decreases, which leads to persistent hypersecretion of PTH. How to precisely manipulate PTH secretion in parathyroid tissue and underlying molecular mechanism is not clear. Here, we establish an optogenetic approach that bypasses CaSR to inhibit PTH secretion in human hyperplastic parathyroid cells. We found that optogenetic stimulation elevates intracellular calcium, inhibits both PTH synthesis and secretion in human parathyroid cells. Long-term pulsatile PTH secretion induced by light stimulation prevented hyperplastic parathyroid tissue-induced bone loss by influencing the bone remodeling in mice. The effects are mediated by light stimulation of opsin expressing parathyroid cells and other type of cells in parathyroid tissue. Our study provides a strategy to regulate release of PTH and associated bone loss of SHPT through an optogenetic approach.


Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

  • Sara Larsson‎ et al.
  • Cellular signalling‎
  • 2016‎

Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our understanding of how metabolic derangements develop in states of hyperparathyroidism, including vitamin D deficiency.


Disrupted tubular parathyroid hormone/parathyroid hormone receptor signaling and damaged tubular cell viability possibly trigger postsurgical kidney injury in patients with advanced hyperparathyroidism.

  • Tetsuhiko Sato‎ et al.
  • Clinical kidney journal‎
  • 2019‎

Parathyroidectomy (PTX) that alleviates clinical manifestations of advanced hyperparathyroidism, including hypercalcemia and hypophosphatemia, is considered the best protection from calcium overload in the kidney. However, little is known about the relationship between postsurgical robust parathyroid hormone (PTH) reduction and perisurgical renal tubular cell viability. Post-PTX kidney function is still a crucial issue for primary hyperparathyroidism (PHPT) and tertiary hyperparathyroidism after kidney transplantation (THPT).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: