2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 524 papers

Distributions of Arctic and Northwest Atlantic killer whales inferred from oxygen isotopes.

  • Cory J D Matthews‎ et al.
  • Scientific reports‎
  • 2021‎

Killer whales (Orcinus orca) are distributed widely in all oceans, although they are most common in coastal waters of temperate and high-latitude regions. The species' distribution has not been fully described in the northwest Atlantic (NWA), where killer whales move into seasonally ice-free waters of the eastern Canadian Arctic (ECA) and occur year-round off the coast of Newfoundland and Labrador farther south. We measured stable oxygen and carbon isotope ratios in dentine phosphate (δ18OP) and structural carbonate (δ18OSC, δ13CSC) of whole teeth and annual growth layers from killer whales that stranded in the ECA (n = 11) and NWA (n = 7). Source δ18O of marine water (δ18Omarine) at location of origin was estimated from dentine δ18OP values, and then compared with predicted isoscape values to assign individual distributions. Dentine δ18OP values were also assessed against those of other known-origin North Atlantic odontocetes for spatial reference. Most ECA and NWA killer whales had mean δ18OP and estimated δ18Omarine values consistent with 18O-depleted, high-latitude waters north of the Gulf Stream, above which a marked decrease in baseline δ18O values occurs. Several individuals, however, had relatively high values that reflected origins in 18O-enriched, low-latitude waters below this boundary. Within-tooth δ18OSC ranges on the order of 1-2‰ indicated interannual variation in distribution. Different distributions inferred from oxygen isotopes suggest there is not a single killer whale population distributed across the northwest Atlantic, and corroborate dietary and morphological differences of purported ecotypes in the region.


Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera.

  • L Rodríguez-Sanz‎ et al.
  • Scientific reports‎
  • 2017‎

The variability of seawater temperature through time is a critical measure of climate change, yet its reconstruction remains problematic in many regions. Mg/Ca and oxygen isotope (δ 18OC) measurements in foraminiferal carbonate shells can be combined to reconstruct seawater temperature and δ 18O (δ 18OSW). The latter is a measure of changes in local hydrology (e.g., precipitation/evaporation, freshwater inputs) and global ice volume. But diagenetic processes may affect foraminiferal Mg/Ca. This restricts its potential in many places, including the Mediterranean Sea, a strategic region for deciphering global climate and sea-level changes. High alkalinity/salinity conditions especially bias Mg/Ca temperatures in the eastern Mediterranean (eMed). Here we advance the understanding of both western Mediterranean (wMed) and eMed hydrographic variability through the penultimate glacial termination (TII) and last interglacial, by applying the clumped isotope (Δ 47) paleothermometer to planktic foraminifera with a novel data-processing approach. Results suggest that North Atlantic cooling during Heinrich stadial 11 (HS11) affected surface-water temperatures much more in the wMed (during winter/spring) than in the eMed (during summer). The method's paired Δ 47 and δ 18OC data also portray δ 18OSW. These records reveal a clear HS11 freshwater signal, which attenuated toward the eMed, and also that last interglacial surface warming in the eMed was strongly amplified by water-column stratification during the deposition of the organic-rich (sapropel) interval known as S5.


Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds.

  • Ruan F de Wet‎ et al.
  • Scientific reports‎
  • 2020‎

Stable isotope ratios of hydrogen and oxygen (δ2H and δ18O) in tap water provide important insights into the way that people interact with and manage the hydrological cycle. Understanding how these interactions vary through space and time allows for the management of these resources to be improved, and for isotope data to be useful in other disciplines. The seasonal variation of δ2H and δ18O in tap water within South Africa was assessed to identify municipalities that are supplied by seasonally invariant sources that have long residence periods, such as groundwater, and those supplied by sources that vary seasonally in a manner consistent with evapoconcentration, such as surface water-the proposed two tap water "worlds". Doing so allows for the cost-effective spatial interpolation of δ2H and δ18O values that likely reflect that of groundwater, removing the residual error introduced by other sources that are dependent on discrete, isolated factors that cannot be spatially generalised. Applying the proposed disaggregation may also allow for the efficient identification of municipalities that are dependent on highly variable or depleted surface water resources, which are more likely to be vulnerable to climate and demographic changes.


Multi-decadal trends in contingent mixing of Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic from otolith stable isotopes.

  • Kohma Arai‎ et al.
  • Scientific reports‎
  • 2021‎

The Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic is comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in US fished regions. Thus, assessment and management of this population can be sensitive to levels of mixing between contingents, which remain unknown. Multi-decadal trends in contingent mixing levels within the US fisheries region were assessed, and the contingent composition across seasons, locations, ages, and size classes were characterized using archived otoliths and developing a classification baseline based on juvenile otolith carbon and oxygen stable isotopes (δ13C/δ18O values). Classification of age ≥ 2 adults demonstrated that northern contingent mixing was prevalent within the US continental shelf waters during the past 2 decades (2000-2019), providing an important seasonal subsidy to the US winter fishery despite substantial depletion in spawning stock biomass of the dominant northern contingent. While the majority of older fish were of the northern contingent during the early 2000s, the southern contingent contribution increased with age/size class during the recent period (2013-2019). Spatial mixing was most prevalent during February and March when the northern contingent occurred as far south as the Delmarva Peninsula, but were mostly absent from US waters in May. A positive relationship (albeit not significant; r = 0.60, p = 0.07) occurred between northern contingent mixing and US fisheries landings, which could imply that higher contingent mixing levels might be associated with greater landings for the US winter mackerel fishery. The yield of the Northwest Atlantic mackerel depends upon the status of the northern contingent, with the southern contingent possibly more prone to depletion. Spatially explicit stock assessment models are recommended to conserve both productivity and stability in this two-component population.


Estimating the organic oxygen content of biochar.

  • Santanu Bakshi‎ et al.
  • Scientific reports‎
  • 2020‎

The organic O content of biochar is useful for assessing biochar stability and reactivity. However, accurately determining the organic O content of biochar is difficult. Biochar contains both organic and inorganic forms of O, and some of the organic O is converted to inorganic O (e.g., newly formed carbonates) when samples are ashed. Here, we compare estimates of the O content for biochars produced from pure compounds (little or no ash), acid-washed biomass (little ash), and unwashed biomass (range of ash content). Novelty of this study includes a new method to predict organic O content of biochar using three easily measured biochar parameters- pyrolysis temperature, H/C molar ratio, and %biochar yield, and evidence indicating that the conventional difference method may substantially underestimate the organic O in biochar and adversely impact the accuracy of O:C ratios and van Krevelen plots. We also present evidence that acid washing removed 17% of the structural O from biochars and significantly changes O/C ratios. Environmental modelers are encouraged to use biochar H:C ratios.


Ascorbate maintains a low plasma oxygen level.

  • Louise Injarabian‎ et al.
  • Scientific reports‎
  • 2020‎

In human blood, oxygen is mainly transported by red blood cells. Accordingly, the dissolved oxygen level in plasma is expected to be limited, although it has not been quantified yet. Here, by developing dedicated methods and tools, we determined that human plasma pO2 = 8.4 mmHg (1.1% O2). Oxygen solubility in plasma was believed to be similar to water. Here we reveal that plasma has an additional ascorbate-dependent oxygen-reduction activity. Plasma experimental oxygenation oxidizes ascorbate (49.5 μM in fresh plasma vs < 2 μM in oxidized plasma) and abolishes this capacity, which is restored by ascorbate supplementation. We confirmed these results in vivo, showing that the plasma pO2 is significantly higher in ascorbate-deficient guinea pigs (Ascorbateplasma < 2 μM), compared to control (Ascorbateplasma > 15 μM). Plasma low oxygen level preserves the integrity of oxidation-sensitive components such as ubiquinol. Circulating leucocytes are well adapted to these conditions, since the abundance of their mitochondrial network is limited. These results shed a new light on the importance of oxygen exposure on leucocyte biological study, in regards with the reducing conditions they encounter in vivo; but also, on the manipulation of blood products to improve their integrity and potentially improve transfusions' efficacy.


The enhanced activity of Pt-Ce nanoalloy for oxygen electroreduction.

  • Juan Qin‎ et al.
  • Scientific reports‎
  • 2020‎

The widespread use of low-temperature polymer electrolyte membrane fuel cells for clean energy source require significant reductions in the amount of expensive electrocatalyst Pt for the oxygen reduction reaction (ORR). Pt based binary alloys are promising materials for more active and stable electrocatalysts. In this paper, we studied Pt-Ce nanoalloy, which was prepared by hydrogen reduction techniques as ORR electrocatalysts. Among all PtCe alloy catalysts, the PtCe/C-800 ℃ shows superior ORR activity, stability and durability compared to commercial Pt/C. The results presented in this paper will provide the future perspectives to research based on Pt-RE (RE = Ce, Dy, Gd, Er, Sm, and La) alloy as an novel electrocatalyst for various electrocatalytic reactions.


Uncovering a possible role of reactive oxygen species in magnetogenetics.

  • Matthew I Brier‎ et al.
  • Scientific reports‎
  • 2020‎

Recent reports have shown that intracellular, (super)paramagnetic ferritin nanoparticles can gate TRPV1, a non-selective cation channel, in a magnetic field. Here, we report the effects of differing field strength and frequency as well as chemical inhibitors on channel gating using a Ca2+-sensitive promoter to express a secreted embryonic alkaline phosphatase (SEAP) reporter. Exposure of TRPV1-ferritin-expressing HEK-293T cells at 30 °C to an alternating magnetic field of 501 kHz and 27.1 mT significantly increased SEAP secretion by ~ 82% relative to control cells, with lesser effects at other field strengths and frequencies. Between 30-32 °C, SEAP production was strongly potentiated 3.3-fold by the addition of the TRPV1 agonist capsaicin. This potentiation was eliminated by the competitive antagonist AMG-21629, the NADPH oxidase assembly inhibitor apocynin, and the reactive oxygen species (ROS) scavenger N-acetylcysteine, suggesting that ROS contributes to magnetogenetic TRPV1 activation. These results provide a rational basis to address the heretofore unknown mechanism of magnetogenetics.


Intracellular oxygen metabolism during bovine oocyte and preimplantation embryo development.

  • Paul J McKeegan‎ et al.
  • Scientific reports‎
  • 2021‎

We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.


In vitro metabolic zonation through oxygen gradient on a chip.

  • Federica Tonon‎ et al.
  • Scientific reports‎
  • 2019‎

Among the multiple metabolic signals involved in the establishment of the hepatic zonation, oxygen could play a key role. Indeed, depending on hepatocyte position in the hepatic lobule, gene expression and metabolism are differently affected by the oxygen gradient present across the lobule. The aim of this study is to understand whether an oxygen gradient, generated in vitro in our developed device, is sufficient to instruct a functional metabolic zonation during the differentiation of human embryonic stem cells (hESCs) from endoderm toward terminally differentiated hepatocytes, thus mimicking the in vivo situation. For this purpose, a microfluidic device was designed for the generation of a stable oxygen gradient. The oxygen gradient was applied to differentiating hESCs at the pre-hepatoblast stage. The definitive endoderm and hepatic endoderm cells were characterized by the expression of the transcription factor SOX-17 and alpha-fetoprotein (AFP). Immature and mature hepatocytes were characterized by hepatocyte nuclear factor 4-alpha (HNF-4α) and albumin (ALB) expression and also analyzed for cytochrome P450 (CYP3A4) zonation and glycogen accumulation through PAS staining. Metabolic zonated genes expression was assessed through quantitative real time PCR. Application of the oxygen gradient during differentiation induced zonated glycogen storage, which was higher in the hepatocytes grown in high pO2 compared to those grown in low pO2. The mRNA levels of glutamine synthetase (GLUL), beta-catenin (CTNNB) and its direct target cyclin D1 (CCND1) showed significantly higher expression in the cells grown in low pO2 compared to those grown in high pO2. On the contrary, carbamoyl-phosphate synthetase 1 (CPS1), ALB, the proliferative marker ki67 (MKI67) and cyclin A (CCNA) resulted to be significantly higher expressed in cells cultured in high pO2 compared to those cultured in low pO2. These results indicate that the oxygen gradient generated in our device can instruct the establishment of a functional metabolic zonation in differentiating hESCs. The possibility to obtain differentiated hepatocytes in vitro may allow in the future to deepen our knowledge about the physiology/pathology of hepatocytes in relation to the oxygen content.


Using plant physiological stable oxygen isotope models to counter food fraud.

  • Florian Cueni‎ et al.
  • Scientific reports‎
  • 2021‎

Fraudulent food products, especially regarding false claims of geographic origin, impose economic damages of $30-$40 billion per year. Stable isotope methods, using oxygen isotopes (δ18O) in particular, are the leading forensic tools for identifying these crimes. Plant physiological stable oxygen isotope models simulate how precipitation δ18O values and climatic variables shape the δ18O values of water and organic compounds in plants. These models have the potential to simplify, speed up, and improve conventional stable isotope applications and produce temporally resolved, accurate, and precise region-of-origin assignments for agricultural food products. However, the validation of these models and thus the best choice of model parameters and input variables have limited the application of the models for the origin identification of food. In our study we test model predictions against a unique 11-year European strawberry δ18O reference dataset to evaluate how choices of input variable sources and model parameterization impact the prediction skill of the model. Our results show that modifying leaf-based model parameters specifically for fruit and with product-independent, but growth time specific environmental input data, plant physiological isotope models offer a new and dynamic method that can accurately predict the geographic origin of a plant product and can advance the field of stable isotope analysis to counter food fraud.


Unravelling oxygen driven α to β phase transformation in tungsten.

  • Ananya Chattaraj‎ et al.
  • Scientific reports‎
  • 2020‎

Thin films of β-W are the most interesting for manipulating magnetic moments using spin-orbit torques, and a clear understanding of α to β phase transition in W by doping impurity, especially oxygen, is needed. Here we present a combined experimental and theoretical study using grazing incidence X-ray diffraction, photoelectron spectroscopy, electron microscopy, and ab initio calculations to explore atomic structure, bonding, and oxygen content for understanding the formation of β-W. It is found that the W films on SiO2/Si have 13-22 at.% oxygen in A15 β structure. Ab initio calculations show higher solution energy of oxygen in β-W, and a tendency to transform locally from α to β phase with increasing oxygen concentration. X-ray absorption spectroscopy also revealed local geometry of oxygen in β-W, in agreement with the simulated one. These results offer an opportunity for a fundamental understanding of the structural transition in α-W and further development of β-W phase for device applications.


In vitro oxygen imaging of acellular and cell-loaded beta cell replacement devices.

  • Mrignayani Kotecha‎ et al.
  • Scientific reports‎
  • 2023‎

Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans. Finding ways to provide cells with sufficient oxygenation remains the major challenge in realizing BAP devices' full potential. Therefore, in vitro oxygen imaging assessment of BAP devices is crucial for predicting the devices' in vivo efficiency. Electron paramagnetic resonance oxygen imaging (EPROI, also known as electron MRI or eMRI) is a unique imaging technique that delivers absolute partial pressure of oxygen (pO2) maps and has been used for cancer hypoxia research for decades. However, its applicability for assessing BAP devices has not been explored. EPROI utilizes low magnetic fields in the mT range, static gradients, and the linear relationship between the spin-lattice relaxation rate (R1) of oxygen-sensitive spin probes such as trityl OX071 and pO2 to generate oxygen maps in tissues. With the support of the Juvenile Diabetes Research Foundation (JDRF), an academic-industry partnership consortium, the "Oxygen Measurement Core" was established at O2M to perform oxygen imaging assessment of BAP devices originated from core members' laboratories. This article aims to establish the protocols and demonstrate a few examples of in vitro oxygen imaging of BAP devices using EPROI. All pO2 measurements were performed using a recently introduced 720 MHz/25 mT preclinical oxygen imager instrument, JIVA-25™. We began by performing pO2 calibration of the biomaterials used in BAPs at 25 mT magnetic field since no such data exist. We compared the EPROI pO2 measurement with a single-point probe for a few selected materials. We also performed trityl OX071 toxicity studies with fibroblasts, as well as insulin-producing cells (beta TC6, MIN6, and human islet cells). Finally, we performed proof-of-concept in vitro pO2 imaging of five BAP devices that varied in size, shape, and biomaterials. We demonstrated that EPROI is compatible with commonly used biomaterials and that trityl OX071 is nontoxic to cells. A comparison of the EPROI with a fluorescent-based point oxygen probe in selected biomaterials showed higher accuracy of EPROI. The imaging of typically heterogenous BAP devices demonstrated the utility of obtaining oxygen maps over single-point measurements. In summary, we present EPROI as a quality control tool for developing efficient cell transplantation devices and artificial tissue grafts. Although the focus of this work is encapsulation systems for diabetes, the techniques developed in this project are easily transferable to other biomaterials, tissue grafts, and cell therapy devices used in the field of tissue engineering and regenerative medicine (TERM). In summary, EPROI is a unique noninvasive tool to experimentally study oxygen distribution in cell transplantation devices and artificial tissues, which can revolutionize the treatment of degenerative diseases like T1D.


A Bio-inspired Hypoxia Sensor using HIF1a-Oxygen-Dependent Degradation Domain.

  • Pablo Iglesias‎ et al.
  • Scientific reports‎
  • 2019‎

Functional imaging has become an important tool in oncology because it not only provides information about the size and localization of the tumour, but also about the pathophysiological features of the tumoural cells. One of the characteristic features of some tumour types is that their fast growth leads to deficient intratumoral vascularization, which results in low oxygen availability. To overcome this lack of oxygen, tumoural cells activate the neoangiogenic program by upregulating the transcription factor HIF-1α. Herein we report a non-invasive in vitro detection method of hypoxia using designed fluorescent peptide probes based on the oxygen-dependent degradation domain of HIF-1α. The fluorescent probe retains the oxygen-sensing capability of HIF-1α, so that it is stabilized under hypoxia and readily degraded by the proteasome under normoxia, thus providing direct information of the cellular oxygen availability.


Tetramethylalloxazines as efficient singlet oxygen photosensitizers and potential redox-sensitive agents.

  • Anna Golczak‎ et al.
  • Scientific reports‎
  • 2023‎

Tetramethylalloxazines (TMeAll) have been found to have a high quantum yield of singlet oxygen generation when used as photosensitizers. Their electronic structure and transition energies (S0 → Si, S0 → Ti, T1 → Ti) were calculated using DFT and TD-DFT methods and compared to experimental absorption spectra. Generally, TMeAll display an energy diagram similar to other derivatives belonging to the alloxazine class of compounds, namely π,π* transitions are accompanied by closely located n,π* transitions. Photophysical data such as quantum yields of fluorescence, fluorescence lifetimes, and nonradiative rate constants were also studied in methanol (MeOH), acetonitrile (ACN), and 1,2-dichloroethane (DCE). The transient absorption spectra were also analyzed. To assess cytotoxicity of new compounds, a hemolytic assay was performed using human red blood cells (RBC) in vitro. Subsequently, fluorescence lifetime imaging experiments (FLIM) were performed on RBC under physiological and oxidative stress conditions alone or in the presence of TMeAll allowing for pinpointing changes caused by those compounds on the intracellular environment of these cells.


The blood oxygen level dependent (BOLD) effect of in-vitro myoglobin and hemoglobin.

  • Dominik P Guensch‎ et al.
  • Scientific reports‎
  • 2021‎

The presence of deoxygenated hemoglobin (Hb) results in a drop in T2 and T2* in magnetic resonance imaging (MRI), known as the blood oxygenation level-dependent (BOLD-)effect. The purpose of this study was to investigate if deoxygenated myoglobin (Mb) exerts a BOLD-like effect. Equine Met-Mb powder was dissolved and converted to oxygenated Mb. T1, T2, T2*-maps and BOLD-bSSFP images at 3Tesla were used to scan 22 Mb samples and 12 Hb samples at room air, deoxygenation, reoxygenation and after chemical reduction. In Mb, T2 and T2* mapping showed a significant decrease after deoxygenation (- 25% and - 12%, p < 0.01), increase after subsequent reoxygenation (+ 17% and 0% vs. room air, p < 0.01), and finally a decrease in T2 after chemical reduction (- 28%, p < 0.01). An opposite trend was observed with T1 for each stage, while chemical reduction reduced BOLD-bSSFP signal (- 3%, p < 0.01). Similar deflections were seen at oxygenation changes in Hb. The T1 changes suggests that the oxygen content has been changed in the specimen. The shortening of transverse relaxation times in T2 and T2*-mapping after deoxygenation in Mb specimens are highly indicative of a BOLD-like effect.


Synergic effects of oxygen supply and antioxidants on pancreatic β-cell spheroids.

  • Dina Myasnikova‎ et al.
  • Scientific reports‎
  • 2019‎

Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation. In this work, we fabricated microwell spheroid culture devices made of oxygen-permeable polydimethylsiloxane (PDMS), with which hypoxia in the core of bioartificial islets was alleviated and glucose-stimulated insulin secretion was increased ~2.5-fold compared to a device with the same configuration but made of non-oxygen-permeable plastic. We also demonstrated that antioxidants, such as ascorbic acid-2-phosphate (AA2P), could neutralize islet damage caused by increased reactive oxygen species (ROS) in the cell culture environment. These results suggest that supply of oxygen together with removal of ROS may lead to a better approach to prepare highly viable and functional bioartificial pancreatic islets.


Light-driven oxygen evolution from water oxidation with immobilised TiO2 engineered for high performance.

  • Maria J Sampaio‎ et al.
  • Scientific reports‎
  • 2021‎

Calcination treatments in the range of 500-900 °C of TiO2 synthesised by the sol-gel resulted in materials with variable physicochemical (i.e., optical, specific surface area, crystallite size and crystalline phase) and morphological properties. The photocatalytic performance of the prepared materials was evaluated in the oxygen evolution reaction (OER) following UV-LED irradiation of aqueous solutions containing iron ions as sacrificial electron acceptors. The highest activity for water oxidation was obtained with the photocatalyst thermally treated at 700 °C (TiO2-700). Photocatalysts with larger anatase to rutile ratio of the crystalline phases and higher surface density of oxygen vacancies (defects) displayed the best performance in OER. The oxygen defects at the photocatalyst surface have proven to be responsible for the enhanced photoactivity, acting as important active adsorption sites for water oxidation. Seeking technological application, water oxidation was accomplished by immobilising the photocatalyst with the highest OER rate measured under the established batch conditions (TiO2-700). Experiments operating under continuous mode revealed a remarkable efficiency for oxygen production, exceeding 12% of the apparent quantum efficiency (AQE) at 384 nm (UV-LED system) compared to the batch operation mode.


3D-printed NiFe-layered double hydroxide pyramid electrodes for enhanced electrocatalytic oxygen evolution reaction.

  • Jinhyuck Ahn‎ et al.
  • Scientific reports‎
  • 2022‎

Electrochemical water splitting has been considered one of the most promising methods of hydrogen production, which does not cause environmental pollution or greenhouse gas emissions. Oxygen evolution reaction (OER) is a significant step for highly efficient water splitting because OER involves the four electron transfer, overcoming the associated energy barrier that demands a potential greater than that required by hydrogen evolution reaction. Therefore, an OER electrocatalyst with large surface area and high conductivity is needed to increase the OER activity. In this work, we demonstrated an effective strategy to produce a highly active three-dimensional (3D)-printed NiFe-layered double hydroxide (LDH) pyramid electrode for OER using a three-step method, which involves direct-ink-writing of a graphene pyramid array and electrodeposition of a copper conducive layer and NiFe-LDH electrocatalyst layer on printed pyramids. The 3D pyramid structures with NiFe-LDH electrocatalyst layers increased the surface area and the active sites of the electrode and improved the OER activity. The overpotential (η) and exchange current density (i0) of the NiFe-LDH pyramid electrode were further improved compared to that of the NiFe-LDH deposited Cu (NiFe-LDH/Cu) foil electrode with the same base area. The 3D-printed NiFe-LDH electrode also exhibited excellent durability without potential decay for 60 h. Our 3D printing strategy provides an effective approach for the fabrication of highly active, stable, and low-cost OER electrocatalyst electrodes.


Real time monitoring of oxygen uptake of hepatocytes in a microreactor using optical microsensors.

  • Christian Gehre‎ et al.
  • Scientific reports‎
  • 2020‎

Most in vitro test systems for the assessment of toxicity are based on endpoint measurements and cannot contribute much to the establishment of mechanistic models, which are crucially important for further progress in this field. Hence, in recent years, much effort has been put into the development of methods that generate kinetic data. Real time measurements of the metabolic activity of cells based on the use of oxygen sensitive microsensor beads have been shown to provide access to the mode of action of compounds in hepatocytes. However, for fully exploiting this approach a detailed knowledge of the microenvironment of the cells is required. In this work, we investigate the cellular behaviour of three types of hepatocytes, HepG2 cells, HepG2-3A4 cells and primary mouse hepatocytes, towards their exposure to acetaminophen when the availability of oxygen for the cell is systematically varied. We show that the relative emergence of two modes of action, one NAPQI dependent and the other one transient and NAPQI independent, scale with expression level of CYP3A4. The transient cellular response associated to mitochondrial respiration is used to characterise the influence of the initial oxygen concentration in the wells before exposure to acetaminophen on the cell behaviour. A simple model is presented to describe the behaviour of the cells in this scenario. It demonstrates the level of control over the role of oxygen supply in these experiments. This is crucial for establishing this approach into a reliable and powerful method for the assessment of toxicity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: