Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 6,098 papers

Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes.

  • Chengfei He‎ et al.
  • Science advances‎
  • 2021‎

Abrupt climate changes during the last deglaciation have been well preserved in proxy records across the globe. However, one long-standing puzzle is the apparent absence of the onset of the Heinrich Stadial 1 (HS1) cold event around 18 ka in Greenland ice core oxygen isotope δ18 O records, inconsistent with other proxies. Here, combining proxy records with an isotope-enabled transient deglacial simulation, we propose that a substantial HS1 cooling onset did indeed occur over the Arctic in winter. However, this cooling signal in the depleted oxygen isotopic composition is completely compensated by the enrichment because of the loss of winter precipitation in response to sea ice expansion associated with AMOC slowdown during extreme glacial climate. In contrast, the Arctic summer warmed during HS1 and YD because of increased insolation and greenhouse gases, consistent with snowline reconstructions. Our work suggests that Greenland δ18 O may substantially underestimate temperature variability during cold glacial conditions.


Distributions of Arctic and Northwest Atlantic killer whales inferred from oxygen isotopes.

  • Cory J D Matthews‎ et al.
  • Scientific reports‎
  • 2021‎

Killer whales (Orcinus orca) are distributed widely in all oceans, although they are most common in coastal waters of temperate and high-latitude regions. The species' distribution has not been fully described in the northwest Atlantic (NWA), where killer whales move into seasonally ice-free waters of the eastern Canadian Arctic (ECA) and occur year-round off the coast of Newfoundland and Labrador farther south. We measured stable oxygen and carbon isotope ratios in dentine phosphate (δ18OP) and structural carbonate (δ18OSC, δ13CSC) of whole teeth and annual growth layers from killer whales that stranded in the ECA (n = 11) and NWA (n = 7). Source δ18O of marine water (δ18Omarine) at location of origin was estimated from dentine δ18OP values, and then compared with predicted isoscape values to assign individual distributions. Dentine δ18OP values were also assessed against those of other known-origin North Atlantic odontocetes for spatial reference. Most ECA and NWA killer whales had mean δ18OP and estimated δ18Omarine values consistent with 18O-depleted, high-latitude waters north of the Gulf Stream, above which a marked decrease in baseline δ18O values occurs. Several individuals, however, had relatively high values that reflected origins in 18O-enriched, low-latitude waters below this boundary. Within-tooth δ18OSC ranges on the order of 1-2‰ indicated interannual variation in distribution. Different distributions inferred from oxygen isotopes suggest there is not a single killer whale population distributed across the northwest Atlantic, and corroborate dietary and morphological differences of purported ecotypes in the region.


Deciphering the Variability in Mg/Ca and Stable Oxygen Isotopes of Individual Foraminifera.

  • Jeroen Groeneveld‎ et al.
  • Paleoceanography and paleoclimatology‎
  • 2019‎

Foraminifera are commonly used in paleoclimate reconstructions as they occur throughout the world's oceans and are often abundantly preserved in the sediments. Traditionally, foraminifera-based proxies like δ18O and Mg/Ca are analyzed on pooled specimens of a single species. Analysis of single specimens of foraminifera allows reconstructing climate variability on timescales related to El Niño-Southern Oscillation or seasonality. However, quantitative calibrations between the statistics of individual foraminifera analyses (IFA) and climate variability are still missing. We performed Mg/Ca and δ18O measurements on single specimens from core top sediments from different settings to better understand the signal recorded by individual foraminifera. We used three species of planktic foraminifera (Globigerinoidesruber (s.s.), T. sacculifer, and N. dutertrei) from the Indo-Pacific Warm Pool and one species (G. ruber (pink)) from the Gulf of Mexico. Mean values for the different species of Mg/Ca versus calculated δ18O temperatures agree with published calibration equations. IFA statistics (both mean and standard deviation) of Mg/Ca and δ18O between the different sites show a strong relationship indicating that both proxies are influenced by a common factor, most likely temperature variations during calcification. This strongly supports the use of IFA to reconstruct climate variability. However, our combined IFA data for the different species only show a weak relationship to seasonal and interannual temperature changes, especially when seasonal variability increases at a location. This suggests that the season and depth habitat of the foraminifera strongly affect IFA variability, such that ecology needs to be considered when reconstructing past climate variability.


Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe.

  • Clément P Bataille‎ et al.
  • PloS one‎
  • 2021‎

Sulfur isotope composition of organic tissues is a commonly used tool for gathering information about provenance and diet in archaeology and paleoecology. However, the lack of maps predicting sulfur isotope variations on the landscape limits the possibility to use this isotopic system in quantitative geographic assignments. We compiled a database of 2,680 sulfur isotope analyses in the collagen of archaeological human and animal teeth from 221 individual locations across Western Europe. We used this isotopic compilation and remote sensing data to apply a multivariate machine-learning regression, and to predict sulfur isotope variations across Western Europe. The resulting model shows that sulfur isotope patterns are highly predictable, with 65% of sulfur isotope variations explained using only 4 variables representing marine sulfate deposition and local geological conditions. We used this novel sulfur isoscape and existing strontium and oxygen isoscapes of Western Europe to apply triple isotopes continuous-surface probabilistic geographic assignments to assess the origin of a series of teeth from local animals and humans from Brittany. We accurately and precisely constrained the origin of these individuals to limited regions of Brittany. This approach is broadly transferable to studies in archaeology and paleoecology as illustrated in a companion paper (Colleter et al. 2021).


Using oxygen and hydrogen stable isotopes to track the migratory movement of Sharp-shinned Hawks (Accipiter striatus) along Western Flyways of North America.

  • Elizabeth A Wommack‎ et al.
  • PloS one‎
  • 2020‎

The large-scale patterns of movement for the Sharp-shinned Hawk (Accipiter striatus), a small forest hawk found throughout western North America, are largely unknown. However, based on field observations we set out to test the hypothesis that juvenile migratory A. striatus caught along two distinct migration routes on opposite sides of the Sierra Nevada Mountains of North America (Pacific Coast and Intermountain Migratory Flyways) come from geographically different natal populations. We applied stable isotope analysis of hydrogen (H) and oxygen (O) of feathers, and large scale models of spatial isotopic variation (isoscapes) to formulate spatially explicit predictions of the origin of the migrant birds. Novel relationships were assessed between the measured hydrogen and oxygen isotope values of feathers from A. striatus museum specimens of known origin and the isoscape modeled hydrogen and oxygen isotope values of precipitation at those known locations. We used these relationships to predict the origin regions for birds migrating along the two flyways from the measured isotope values of migrant's feathers and the associated hydrogen and oxygen isotopic composition of precipitation where these feathers were formed. The birds from the two migration routes had overlap in their natal/breeding origins and did not differentiate into fully separate migratory populations, with birds from the Pacific Coast Migratory Flyway showing broader natal geographic origins than those from the Intermountain Flyway. The methodology based on oxygen isotopes had, in general, less predictive power than the one based on hydrogen. There was broad agreement between the two isotope approaches in the geographic assignment of the origins of birds migrating along the Pacific Coast Flyway, but not for those migrating along the Intermountain Migratory Flyway. These results are discussed in terms of their implications for conservation efforts of A. striatus in western North America, and the use of combined hydrogen and oxygen stable isotope analysis to track the movement of birds of prey on continental scales.


Isotopes as tracers of the Hawaiian coffee-producing regions.

  • Carla Rodrigues‎ et al.
  • Journal of agricultural and food chemistry‎
  • 2011‎

Green coffee bean isotopes have been used to trace the effects of different climatic and geological characteristics associated with the Hawaii islands. Isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry ((MC)-ICP-SFMS and ICP-QMS) were applied to determine the isotopic composition of carbon (δ13C), nitrogen (δ15N), sulfur (δ34S), and oxygen (δ18O), the isotope abundance of strontium (87Sr/86Sr), and the concentrations of 30 different elements in 47 green coffees. The coffees were produced in five Hawaii regions: Hawaii, Kauai, Maui, Molokai, and Oahu. Results indicate that coffee plant seed isotopes reflect interactions between the coffee plant and the local environment. Accordingly, the obtained analytical fingerprinting could be used to discriminate between the different Hawaii regions studied.


Stable isotopes show that earthquakes enhance permeability and release water from mountains.

  • Takahiro Hosono‎ et al.
  • Nature communications‎
  • 2020‎

Hydrogeological properties can change in response to large crustal earthquakes. In particular, permeability can increase leading to coseismic changes in groundwater level and flow. These processes, however, have not been well-characterized at regional scales because of the lack of datasets to describe water provenances before and after earthquakes. Here we use a large data set of water stable isotope ratios (n = 1150) to show that newly formed rupture systems crosscut surrounding mountain aquifers, leading to water release that causes groundwater levels to rise (~11 m) in down-gradient aquifers after the 2016 Mw 7.0 Kumamoto earthquake. Neither vertical infiltration of soil water nor the upwelling of deep fluids was the major cause of the observed water level rise. As the Kumamoto setting is representative of volcanic aquifer systems at convergent margins where seismotectonic activity is common, our observations and proposed model should apply more broadly.


Penultimate deglacial warming across the Mediterranean Sea revealed by clumped isotopes in foraminifera.

  • L Rodríguez-Sanz‎ et al.
  • Scientific reports‎
  • 2017‎

The variability of seawater temperature through time is a critical measure of climate change, yet its reconstruction remains problematic in many regions. Mg/Ca and oxygen isotope (δ 18OC) measurements in foraminiferal carbonate shells can be combined to reconstruct seawater temperature and δ 18O (δ 18OSW). The latter is a measure of changes in local hydrology (e.g., precipitation/evaporation, freshwater inputs) and global ice volume. But diagenetic processes may affect foraminiferal Mg/Ca. This restricts its potential in many places, including the Mediterranean Sea, a strategic region for deciphering global climate and sea-level changes. High alkalinity/salinity conditions especially bias Mg/Ca temperatures in the eastern Mediterranean (eMed). Here we advance the understanding of both western Mediterranean (wMed) and eMed hydrographic variability through the penultimate glacial termination (TII) and last interglacial, by applying the clumped isotope (Δ 47) paleothermometer to planktic foraminifera with a novel data-processing approach. Results suggest that North Atlantic cooling during Heinrich stadial 11 (HS11) affected surface-water temperatures much more in the wMed (during winter/spring) than in the eMed (during summer). The method's paired Δ 47 and δ 18OC data also portray δ 18OSW. These records reveal a clear HS11 freshwater signal, which attenuated toward the eMed, and also that last interglacial surface warming in the eMed was strongly amplified by water-column stratification during the deposition of the organic-rich (sapropel) interval known as S5.


Tree-ring isotopes suggest atmospheric drying limits temperature-growth responses of treeline bristlecone pine.

  • Hugo J de Boer‎ et al.
  • Tree physiology‎
  • 2019‎

Altitudinally separated bristlecone pine populations in the White Mountains (California, USA) exhibit differential climate-growth responses as temperature and tree-water relations change with altitude. These populations provide a natural experiment to explore the ecophysiological adaptations of this unique tree species to the twentieth century climate variability. We developed absolutely dated annual ring-width chronologies, and cellulose stable carbon and oxygen isotope chronologies from bristlecone pine growing at the treeline (~3500 m) and ~200 m below for the period AD 1710-2010. These chronologies were interpreted in terms of ecophysiological adaptations to climate variability with a dual-isotope model and a leaf gas exchange model. Ring widths show positive tree growth anomalies at treeline and consistent slower growth below treeline in relation to the twentieth century warming and associated atmospheric drying until the 1980s. Growth rates of both populations declined during and after the 1980s when growing-season temperature and atmospheric vapour pressure deficit continued to increase. Our model-based interpretations of the cellulose stable isotopes indicate that positive treeline growth anomalies prior to the 1980s were related to increased stomatal conductance and leaf-level transpiration and photosynthesis. Reduced growth since the 1980s occurred with a shift to more conservative leaf gas exchange in both the treeline and below-treeline populations, whereas leaf-level photosynthesis continued to increase in response to rising atmospheric CO2 concentrations. Our results suggest that warming-induced atmospheric drying confounds positive growth responses of apparent temperature-limited bristlecone pine populations at treeline. In addition, the observed ecophysiological responses of attitudinally separated bristlecone pine populations illustrate the sensitivity of conifers to climate change.


Effect of (2)H and (18)O water isotopes in kinesin-1 gliding assay.

  • Andy Maloney‎ et al.
  • PeerJ‎
  • 2014‎

We show for the first time the effects of heavy-hydrogen water ((2)H2O) and heavy-oxygen water (H2 (18)O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors.


Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds.

  • Ruan F de Wet‎ et al.
  • Scientific reports‎
  • 2020‎

Stable isotope ratios of hydrogen and oxygen (δ2H and δ18O) in tap water provide important insights into the way that people interact with and manage the hydrological cycle. Understanding how these interactions vary through space and time allows for the management of these resources to be improved, and for isotope data to be useful in other disciplines. The seasonal variation of δ2H and δ18O in tap water within South Africa was assessed to identify municipalities that are supplied by seasonally invariant sources that have long residence periods, such as groundwater, and those supplied by sources that vary seasonally in a manner consistent with evapoconcentration, such as surface water-the proposed two tap water "worlds". Doing so allows for the cost-effective spatial interpolation of δ2H and δ18O values that likely reflect that of groundwater, removing the residual error introduced by other sources that are dependent on discrete, isolated factors that cannot be spatially generalised. Applying the proposed disaggregation may also allow for the efficient identification of municipalities that are dependent on highly variable or depleted surface water resources, which are more likely to be vulnerable to climate and demographic changes.


Datasets for spatial variation of O and H isotopes in waters and hair across South Korea.

  • Mukesh Kumar Gautam‎ et al.
  • Data in brief‎
  • 2020‎

The data presented here include the results of oxygen (δ18O) and hydrogen (δ2H) isotope analyses of water and human scalp hair samples collected from throughout the South Korea. The purpose of data collection was to generate isoscapes of oxygen and hydrogen isotopes for South Korea. To achieve the objective, we collected human scalp hair and three different types of water samples: groundwater, stream water and tap water. The data presented in the article are raw isotope data of water and hair samples in tabulated manner and interpolated isoscapes generated using those data. Further information related to the datasets and discussion about them can be found in the related research article entitled "Spatial variations in oxygen and hydrogen isotopes in waters and human hair across South Korea" [1].


Characteristics of surface water quality and stable isotopes in Bamen Bay watershed, Hainan Province, China.

  • Julan Guo‎ et al.
  • PloS one‎
  • 2021‎

Bamen Bay is located at the intersection of the Wenjiao River and Wenchang River in Hainan Province (China), where mangroves have been facing a threat of water quality deterioration. Therefore, it is imperative to study the characteristics of the surface water quality on a watershed scale. Water samples were collected three times from 36 monitoring sites from 2015 to 2016. It was found that nitrate was the main inorganic nitrogen form and all the surface water types were alkaline. Meanwhile, aquaculture water had high content of nitrogen, total phosphorus, chlorophyll a (Chl.a), total organic carbon (TOC), and chemical oxygen demand (COD). Significant spatial and temporal variations were found for most parameters. However, stable isotopes of δD and δ18O indicated that river water mainly originated from atmospheric precipitation and experienced strong evaporation. The water chemistry and isotopes of the Bamen Bay, mangroves, and aquaculture water were initially affected by the mixing of fresh water and seawater, followed by evaporation. The river and reservoir water chemistry were mainly controlled by water-rock interactions and cation exchange as deduced from the ionic relationships and Gibbs plots. These interactions involved the dissolution of calcite-, bicarbonate-, carbonate-, and calcium-containing minerals. Oxidized environments (river, reservoir, and Bamen Bay) were conducive for nitrification, while anaerobic conditions (mangrove and aquaculture water) were beneficial to the reduced nitrogen forms.


Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin.

  • Peter H Barry‎ et al.
  • Scientific data‎
  • 2019‎

In 2017, fluid and gas samples were collected across the Costa Rican Arc. He and Ne isotopes, C isotopes as well as total organic and inorganic carbon concentrations were measured. The samples (n = 24) from 2017 are accompanied by (n = 17) samples collected in 2008, 2010 and 2012. He-isotopes ranged from arc-like (6.8 RA) to crustal (0.5 RA). Measured dissolved inorganic carbon (DIC) δ13CVPDB values varied from 3.55 to -21.57‰, with dissolved organic carbon (DOC) following the trends of DIC. Gas phase CO2 only occurs within ~20 km of the arc; δ13CVPDB values varied from -0.84 to -5.23‰. Onsite, pH, conductivity, temperature and dissolved oxygen (DO) were measured; pH ranged from 0.9-10.0, conductivity from 200-91,900 μS/cm, temperatures from 23-89 °C and DO from 2-84%. Data were used to develop a model which suggests that ~91 ± 4.0% of carbon released from the slab/mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition with an additional 3.3 ± 1.3% incorporated into autotrophic biomass.


Reversible perovskite electrocatalysts for oxygen reduction/oxygen evolution.

  • Kieren Bradley‎ et al.
  • Chemical science‎
  • 2019‎

The identification of electrocatalysts mediating both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are prerequisite for the development of reversible fuel cells and rechargeable metal-air batteries. The question remains as to whether a bifunctional catalyst, or a single catalyst site, will exhibit potentials converging to +1.23 VRHE. Transition metal-based perovskites provide tunable catalysts where site substitution can influence both ORR and OER, however substitution in the pseudo-binary phases results in an anti-correlation in ORR and OER activities. We reveal that La x Mn y Ni1-y O3-δ , compositions with lanthanum A-site sub-stoichiometry exhibit reversible activity correlating with the appearance of the Mn3+/Mn4+ redox couple. The Mn3+/Mn4+ couple is associated with Mn4+ co-existing with Mn3+ in the bulk, as La3+ is substituted by Ni2+ at the A-site to create a mixed valent system. We also show that a direct A-site substitution by the Ca2+ cation in La x Ca1-x Mn y O3-δ perovskites also results in the creation of Mn4+, the appearance of the Mn3+/Mn4+ redox couple, and a concomitant reversible activity. These results highlight a general strategy of optimizing oxide electrocatalysts with reversible activity.


Aquatic plant wax hydrogen and carbon isotopes in Greenland lakes record shifts in methane cycling during past Holocene warming.

  • Jamie M McFarlin‎ et al.
  • Science advances‎
  • 2023‎

Predicting changes to methane cycling in Arctic lakes is of global concern in a warming world but records constraining lake methane dynamics with past warming are rare. Here, we demonstrate that the hydrogen isotopic composition (δ2H) of mid-chain waxes derived from aquatic moss clearly decouples from precipitation during past Holocene warmth and instead records incorporation of methane in plant biomass. Trends in δ2Hmoss and δ13Cmoss values point to widespread Middle Holocene (11,700 to 4200 years ago) shifts in lake methane cycling across Greenland during millennia of elevated summer temperatures, heightened productivity, and lowered hypolimnetic oxygen. These data reveal ongoing warming may lead to increases in methane-derived C in many Arctic lakes, including lakes where methane is not a major component of the C cycle today. This work highlights a previously unrecognized mechanism influencing δ2H values of mid-chain wax and draws attention to the unquantified role of common aquatic mosses as a potentially important sink of lake methane across the Arctic.


Multi-decadal trends in contingent mixing of Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic from otolith stable isotopes.

  • Kohma Arai‎ et al.
  • Scientific reports‎
  • 2021‎

The Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic is comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in US fished regions. Thus, assessment and management of this population can be sensitive to levels of mixing between contingents, which remain unknown. Multi-decadal trends in contingent mixing levels within the US fisheries region were assessed, and the contingent composition across seasons, locations, ages, and size classes were characterized using archived otoliths and developing a classification baseline based on juvenile otolith carbon and oxygen stable isotopes (δ13C/δ18O values). Classification of age ≥ 2 adults demonstrated that northern contingent mixing was prevalent within the US continental shelf waters during the past 2 decades (2000-2019), providing an important seasonal subsidy to the US winter fishery despite substantial depletion in spawning stock biomass of the dominant northern contingent. While the majority of older fish were of the northern contingent during the early 2000s, the southern contingent contribution increased with age/size class during the recent period (2013-2019). Spatial mixing was most prevalent during February and March when the northern contingent occurred as far south as the Delmarva Peninsula, but were mostly absent from US waters in May. A positive relationship (albeit not significant; r = 0.60, p = 0.07) occurred between northern contingent mixing and US fisheries landings, which could imply that higher contingent mixing levels might be associated with greater landings for the US winter mackerel fishery. The yield of the Northwest Atlantic mackerel depends upon the status of the northern contingent, with the southern contingent possibly more prone to depletion. Spatially explicit stock assessment models are recommended to conserve both productivity and stability in this two-component population.


Artificially steering electrocatalytic oxygen evolution reaction mechanism by regulating oxygen defect contents in perovskites.

  • Min Lu‎ et al.
  • Science advances‎
  • 2022‎

The regulation of mechanism on the electrocatalysis process with multiple reaction pathways is more efficient and essential than conventional material engineering for the enhancement of catalyst performance. Here, by using oxygen evolution reaction (OER) as a model, which has an adsorbate evolution mechanism (AEM) and a lattice oxygen oxidation mechanism (LOM), we demonstrate a general strategy for steering the two mechanisms on various LaxSr1-xCoO3-δ. By delicately controlling the oxygen defect contents, the dominant OER mechanism on LaxSr1-xCoO3-δ can be arbitrarily transformed between AEM-LOM-AEM accompanied by a volcano-type activity variation trend. Experimental and computational evidence explicitly reveal that the phenomenon is due to the fact that the increased oxygen defects alter the lattice oxygen activity with a volcano-type trend and preserve the Co0 state for preferably OER. Therefore, we achieve the co-optimization between the activity and stability of catalysts by altering the mechanism rather than a specific design of catalysts.


Chirality enhances oxygen reduction.

  • Yutao Sang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Controlled reduction of oxygen is important for developing clean energy technologies, such as fuel cells, and is vital to the existence of aerobic organisms. The process starts with oxygen in a triplet ground state and ends with products that are all in singlet states. Hence, spin constraints in the oxygen reduction must be considered. Here, we show that the electron transfer efficiency from chiral electrodes to oxygen (oxygen reduction reaction) is enhanced over that from achiral electrodes. We demonstrate lower overpotentials and higher current densities for chiral catalysts versus achiral ones. This finding holds even for electrodes composed of heavy metals with large spin-orbit coupling. The effect results from the spin selectivity conferred on the electron current by the chiral assemblies, the chiral-induced spin selectivity effect.


Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation.

  • Yangli Pan‎ et al.
  • Nature communications‎
  • 2020‎

The development of oxygen evolution reaction (OER) electrocatalysts remains a major challenge that requires significant advances in both mechanistic understanding and material design. Recent studies show that oxygen from the perovskite oxide lattice could participate in the OER via a lattice oxygen-mediated mechanism, providing possibilities for the development of alternative electrocatalysts that could overcome the scaling relations-induced limitations found in conventional catalysts utilizing the adsorbate evolution mechanism. Here we distinguish the extent to which the participation of lattice oxygen can contribute to the OER through the rational design of a model system of silicon-incorporated strontium cobaltite perovskite electrocatalysts with similar surface transition metal properties yet different oxygen diffusion rates. The as-derived silicon-incorporated perovskite exhibits a 12.8-fold increase in oxygen diffusivity, which matches well with the 10-fold improvement of intrinsic OER activity, suggesting that the observed activity increase is dominantly a result of the enhanced lattice oxygen participation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: