2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Charged pyridinium oximes with thiocarboxamide moiety are equally or less effective reactivators of organophosphate-inhibited cholinesterases compared to analogous carboxamides.

  • Zuzana Kohoutova‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2022‎

The organophosphorus antidotes, so-called oximes, are able to restore the enzymatic function of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) via cleavage of organophosphate from the active site of the phosphylated enzyme. In this work, the charged pyridinium oximes containing thiocarboxamide moiety were designed, prepared and tested. Their stability and pKa properties were found to be analogous to parent carboxamides (K027, K048 and K203). The inhibitory ability of thiocarboxamides was found in low µM levels for AChE and high µM levels for BChE. Their reactivation properties were screened on human recombinant AChE and BChE inhibited by nerve agent surrogates and paraoxon. One thiocarboxamide was able to effectively restore function of NEMP- and NEDPA-AChE, whereas two thiocarboxamides were able to reactivate BChE inhibited by all tested organophosphates. These results were confirmed by reactivation kinetics, where thiocarboxamides were proved to be effective, but less potent reactivators if compared to carboxamides.


Halogen substituents enhance oxime nucleophilicity for reactivation of cholinesterases inhibited by nerve agents.

  • Tamara Zorbaz‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

The fluorinated bis-pyridinium oximes were designed and synthesized with the aim of increasing their nucleophilicity and potential to reactivate phosphorylated human recombinant acetylcholinesterase (AChE) and human purified plasmatic butyrylcholinesterase (BChE) in relation to chlorinated and non-halogenated oxime analogues. Compared to non-halogenated oximes, halogenated oximes showed lower pKa of the oxime group (fluorinated < chlorinated < non-halogenated) along with higher level of oximate anion formation at the physiological pH, and had a higher binding affinity of both AChE and BChE. The stability tests showed that the fluorinated oximes were stable in water, while in buffered environment di-fluorinated oximes were prone to rapid degradation, which was reflected in their lower reactivation ability. Mono-fluorinated oximes showed comparable reactivation to non-halogenated (except asoxime) and mono-chlorinated oximes in case of AChE inhibited by sarin, cyclosarin, VX, and tabun, but were less efficient than di-chlorinated ones. The same trend was observed in the reactivation of inhibited BChE. The advantage of halogen substituents in the stabilization of oxime in a position optimal for in-line nucleophilic attack were confirmed by extensive molecular modelling of pre-reactivation complexes between the analogue oximes and phosphorylated AChE and BChE. Halogen substitution was shown to provide oximes with additional beneficial properties, e.g., fluorinated oximes gained antioxidative capacity, and moreover, halogens themselves did not increase cytotoxicity of oximes. Finally, the in vivo administration of highly efficient reactivator and the most promising analogue, 3,5-di-chloro-bispyridinium oxime with trimethylene linker, provided significant protection of mice exposed to sarin and cyclosarin.


Pyridinium-2-carbaldoximes with quinolinium carboxamide moiety are simultaneous reactivators of acetylcholinesterase and butyrylcholinesterase inhibited by nerve agent surrogates.

  • Hyun Myung Lee‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2021‎

The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: