Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 126 papers

Reactivation of organophosphate-inhibited serum butyrylcholinesterase by novel substituted phenoxyalkyl pyridinium oximes and traditional oximes.

  • Royce H Nichols‎ et al.
  • Toxicology‎
  • 2021‎

Organophosphorus compounds (OPs) include nerve agents and insecticides that potently inhibit acetylcholinesterase (AChE), an essential enzyme found throughout the nervous system. High exposure levels to OPs lead to seizures, cardiac arrest, and death if left untreated. Oximes are a critical piece to the therapeutic regimen which remove the OP from the inhibited AChE and restore normal cholinergic function. The current oximes 2-PAM, MMB-4, TMB-4, HI-6, and obidoxime (OBD) have two drawbacks: lack of broad spectrum protection against multiple OP structures and poor brain penetration to protect against OP central neurotoxicity. An alternative strategy to enhance therapy is reactivation of serum butyrylcholinesterase (BChE). BChE is stoichiometrically inhibited by OPs with no apparent toxic result. Inhibition of BChE in the serum followed by reactivation could create a pseudo-catalytic scavenger allowing numerous regenerations of BChE to detoxify circulating OP molecules before they can reach target AChE. BChE in serum from rats, guinea pigs or humans was screened for the reactivation potential of our novel substituted phenoxyalkyl pyridinium oximes, plus 2-PAM, MMB-4, TMB-4, HI-6, and OBD (100μM) in vitro after inhibition by highly relevant surrogates of sarin, VX, and cyclosarin, and also DFP, and the insecticidal active metabolites paraoxon, phorate-oxon, and phorate-oxon sulfoxide. Novel oxime 15 demonstrated significant broad spectrum reactivation of OP-inhibited rat serum BChE while novel oxime 20 demonstrated significant broad spectrum reactivation of OP-inhibited human serum BChE. All tested oximes were poor reactivators of OP-inhibited guinea pig serum BChE. The bis-pyridinium oximes were poor BChE reactivators overall. BChE reactivation may be an additional mechanism to attenuate OP toxicity and contribute to therapeutic efficacy.


Design, synthesis, and antitumor activity evaluation of steroidal oximes.

  • Ana R Gomes‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

Steroidal compounds were proven to be efficient drugs against several types of cancer. Oximes are also chemical structures frequently associated with anticancer activity. The main goal of this work was to combine the two referred structures by synthesizing steroidal oximes and evaluating them in several cancer cell lines. Compounds (17E)-5α-androst-3-en-17-one oxime (3,4 - OLOX), (17E)-3α,4α-epoxy-5α-androstan-17-one oxime (3,4 - EPOX), (17E)-androst-4-en-17-one oxime (4,5 - OLOX) and (17E)-4α,5α-epoxyandrostan-17-one oxime (4,5 - EPOX) were synthesized and their cytotoxicity evaluated in four human cancer cell lines, namely colorectal adenocarcinoma (WiDr), non-small cell lung cancer (H1299), prostate cancer (PC3) and hepatocellular carcinoma (HepG2). A human non-tumour cell line, CCD841 CoN (normal colon cell line) was also used. MTT assay, flow cytometry, fluorescence and hemocompatibility techniques were performed to further analyse the cytotoxicity of the compounds. 3,4 - OLOX was the most effective compound in decreasing tumour cell proliferation in all cell lines, especially in WiDr (IC50 = 9.1 μM) and PC3 (IC50 = 13.8 μM). 4,5 - OLOX also showed promising results in the same cell lines (IC50 = 16.1 μM in WiDr and IC50 = 14.5 μM in PC3). Further studies also revealed that 3,4 - OLOX and 4,5 - OLOX induced a decrease in cell viability accompanied by an increase in cell death, mainly by apoptosis/necroptosis for 3,4 - OLOX in both cell lines and for 4,5 - OLOX in WiDr cells, and by necrosis for 4,5 - OLOX in PC3 cells. These compounds might also exert their cytotoxicity by ROS production and are not toxic for non-tumour CCD841 CoN cells. Additionally, both compounds did not induce haemoglobin release, proving to be safe for intravenous administration. 3,4 - OLOX and 4,5 - OLOX might be the starting point for an optimization program towards the discover of new steroidal oximes for anticancer treatment.


Mechanochemical Synthesis and Isomerization of N-Substituted Indole-3-carboxaldehyde Oximes †.

  • Matej Baláž‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Performing solution-phase oximation reactions with hydroxylamine hydrochloride (NH2OH·HCl) carries significant risk, especially in aqueous solutions. In the present study, four N-substituted indole-3-carboxaldehyde oximes were prepared from the corresponding aldehydes by solvent-free reaction with NH2OH·HCl and a base (NaOH or Na2CO3) using a mechanochemical approach, thus minimizing the possible risk. In all cases, the conversion to oximes was almost complete. The focus of this work is on 1-methoxyindole-3-carboxaldehyde oxime, a key intermediate in the production of indole phytoalexins with useful antimicrobial properties. Under optimized conditions, it was possible to reach almost 95% yield after 20 min of milling. Moreover, for the products containing electron-donating substituents (-CH3, -OCH3), the isomerization from the oxime anti to syn isomer under acidic conditions was discovered. For the 1-methoxy analog, the acidic isomerization of pure isomers in solution resulted in the formation of anti isomer, whereas the prevalence of syn isomer was observed in solid state. From NMR data the syn and anti structures of produced oximes were elucidated. This work shows an interesting and possibly scalable alternative to classical synthesis and underlines environmentally friendly and sustainable character of mechanochemistry.


Acute Toxic Injuries of Rat's Visceral Tissues Induced by Different Oximes.

  • Vesna Jaćević‎ et al.
  • Scientific reports‎
  • 2019‎

Certain AChE reactivators, asoxime, obidoxime, K027, K048, and K075, when taken in overdoses and sometimes even when introduced within therapeutic ranges, may injure the different organs. As a continuation of previously published data, in this study, Wistar rats have sacrificed 24 hrs and 7 days after single im application of 0.1LD50, 0.5LD50 and 1.0LD50 of each reactivator, and examinated tissue samples were obtained for pathohistological and semiquantitative analysis. A severity of tissue alteration, expressed as different tissue damage scores were evaluated. Morphological structure of examinated tissues treated with of 0.1LD50 of all reactivators was comparable with the control group of rats. Moderate injuries were seen in visceral tissues treated with 0.5LD50 of asoxime, obidoxime and K027. Acute damages were enlarged after treatment with 0.5LD50 and 1.0LD50 of all reactivators during the next 7 days. The most prominent changes were seen in rats treated with 1.0LD50 of K048 and K075 (P < 0.001 vs. control and asoxime-treated group). All reactivators given by a single, high, unitary dose regimen, have an adverse effect not only on the main visceral tissue, but on the whole rat as well, but the exact mechanism of cellular injury remains to be confirmed in further investigation.


Antidotal treatment of GF-agent intoxication in mice with bispyridinium oximes.

  • Lucie Sevelová‎ et al.
  • Toxicology‎
  • 2005‎

It was shown that intoxications with GF-agent are rather resistant to convential oxime therapy; therefore, the development of new oximes in an effort to improve this unsatisfactory situation continues. Upon screening in vitro reactivation test for oximes, that were either newly synthesized at our department, or those that have never been tested for reactivation of GF-inhibited acetylcholinesterase (AChE), three oximes {(1,4-bis(4-hydroxyiminomethylpyridinium)butane dibromide) (K033); (1-(2-hydroxyiminomethylpyridinium)-3-(3-carbamoylpyridinium)-2-oxa-propane dichloride) (HS-6); and (1-(2-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)-but-2-ene dibromide) (BI-6)} with the highest reactivation potency were chosen for in vivo testing in our study. 1,3-Bis(4-hydroxyiminomethylpyridinium)-2-oxa-propane dibromide) (obidoxime); (1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxa-propane dichloride) (HI-6); and (1,1-bis(4-hydroxyiminomethylpyridinium)-methane dibromide) (methoxime) were chosen for comparison as a standard antidotal treatment. All the oximes were applied at the same proportion of their LD50 value (5%), and because of the different acute toxicity of the oximes, the molar concentrations of their solutions for intramuscular (i.m.) administration were considerably different. The highest therapeutic ratio was achieved for therapeutic regimen consisting of HI-6 and atropine. The significantly (P < 0.05) lowest effectivity in treatment of supralethal GF-agent poisoning in comparison with all the other therapeutic regimens, was surprisingly observed for methoxime. HS-6, K033 and BI-6 as well as obidoxime were comparably effective antidotes against GF-agent intoxication and their therapeutic ratios were similar.


Screening of N-alkyl-cyanoacetamido oximes as substitutes for N-hydroxysuccinimide.

  • Sherine N Khattab‎ et al.
  • ChemistryOpen‎
  • 2012‎

Peptide-bond formation is a pivotal process in the synthesis of peptide oligomers. Among the various coupling methodologies described, carbodiimides combine strong acylation potency and smooth reaction conditions, and they are commonly used in the presence of N-hydroxylamine additives. In recent years, acidic oxime templates, mainly ethyl 2-cyano-2-(hydroxyimino) acetate (Oxyma), have emerged as highly reactive alternatives to the classic and explosive-prone benzotriazolic additives, 1-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt). However, to achieve certain biochemical targets, less reactive species, such as N-hydroxysuccinimide (HOSu) esters, are often required to obtain stability under aqueous conditions. In the present study, we report on a new family of water-soluble N-alkyl-cyanoacetamido oximes, most of which have proven useful in the construction of active carbonates for the introduction of fluorenylmethoxycarbonyl (Fmoc) with minimal impact of dipeptide impurities. We performed a direct comparison of these new N-alkyl-cyanoacetamido oximes with HOSu in order to evaluate their capacity to retain optical purity and their coupling efficiency in the assembly of bulky residues.


Cytotoxicity-related effects of imidazolium and chlorinated bispyridinium oximes in SH-SY5Y cells.

  • Antonio Zandona‎ et al.
  • Arhiv za higijenu rada i toksikologiju‎
  • 2022‎

Current research has shown that several imidazolium and chlorinated bispyridinium oximes are cytotoxic and activate different mechanisms or types of cell death. To investigate this further, we analysed interactions between these oximes and acetylcholine receptors (AChRs) and how they affect several signalling pathways to find a relation between the observed toxicities and their effects on these specific targets. Chlorinated bispyridinium oximes caused time-dependent cytotoxicity by inhibiting the phosphorylation of STAT3 and AMPK without decreasing ATP and activated ERK1/2 and p38 MAPK signal cascades. Imidazolium oximes induced a time-independent and significant decrease in ATP and inhibition of the ERK1/2 signalling pathway along with phosphorylation of p38 MAPK, AMPK, and ACC. These pathways are usually triggered by a change in cellular energy status or by external signals, which suggests that oximes interact with some membrane receptors. Interestingly, in silico analysis also indicated that the highest probability of interaction for all of our oximes is with the family of G-coupled membrane receptors (GPCR). Furthermore, our experimental results showed that the tested oximes acted as acetylcholine antagonists for membrane AChRs. Even though oxime interactions with membrane receptors need further research and clarification, our findings suggest that these oximes make promising candidates for the development of specific therapies not only in the field of cholinesterase research but in other fields too, such as anticancer therapy via altering the Ca2+ flux involved in cancer progression.


Oximes: inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study.

  • Vendula Sepsova‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring.


Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl.

  • Dietrich E Lorke‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Poisoning with organophosphorus compounds (OPCs) represents an ongoing threat to civilians and rescue personal. We have previously shown that oximes, when administered prophylactically before exposure to the OPC paraoxon, are able to protect from its toxic effects. In the present study, we have assessed to what degree experimental (K-27; K-48; K-53; K-74; K-75) or established oximes (pralidoxime, obidoxime), when given as pretreatment at an equitoxic dosage of 25% of LD01, are able to reduce mortality induced by the OPC azinphos-methyl. Their efficacy was compared with that of pyridostigmine, the only FDA-approved substance for such prophylaxis. Efficacy was quantified in rats by Cox analysis, calculating the relative risk of death (RR), with RR=1 for the reference group given only azinphos-methyl, but no prophylaxis. All tested compounds significantly (p ≤ 0.05) reduced azinphos-methyl-induced mortality. In addition, the efficacy of all tested experimental and established oximes except K-53 was significantly superior to the FDA-approved compound pyridostigmine. Best protection was observed for the oximes K-48 (RR = 0.20), K-27 (RR = 0.23), and obidoxime (RR = 0.21), which were significantly more efficacious than pralidoxime and pyridostigmine. The second-best group of prophylactic compounds consisted of K-74 (RR = 0.26), K-75 (RR = 0.35) and pralidoxime (RR = 0.37), which were significantly more efficacious than pyridostigmine. Pretreatment with K-53 (RR = 0.37) and pyridostigmine (RR = 0.52) was the least efficacious. Our present data, together with previous results on other OPCs, indicate that the experimental oximes K-27 and K-48 are very promising pretreatment compounds. When penetration into the brain is undesirable, obidoxime is the most efficacious prophylactic agent already approved for clinical use.


Novel Insights into the Thioesterolytic Activity of N-Substituted Pyridinium-4-oximes.

  • Blaženka Foretić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The pyridinium oximes are known esterolytic agents, usually classified in the literature as catalysts, which mimic the catalytic mode of hydrolases. Herein, we combined kinetic and computational studies of the pyridinium-4-oxime-mediated acetylthiocholine (AcSCh+) hydrolysis to provide novel insights into their potential catalytic activity. The N-methyl- and N-benzylpyridinium-4-oximes have been tested as oximolytic agents toward the AcSCh+, while the newly synthesized O-acetyl-N-methylpyridinium-4-oxime iodide was employed for studying the consecutive hydrolytic reaction. The relevance of the AcSCh+ hydrolysis as a competitive reaction to AcSCh+ oximolysis was also investigated. The reactions were independently studied spectrophotometrically and rate constants, koxime, kw and kOH, were evaluated over a convenient pH-range at I = 0.1 M and 25 °C. The catalytic action of pyridinium-4-oximes comprises two successive stages, acetylation (oximolysis) and deacetylation stage (pyridinium-4-oxime-ester hydrolysis), the latter being crucial for understanding the whole catalytic cycle. The complete mechanism is presented by the free energy reaction profiles obtained with (CPCM)/M06-2X/6-311++G(2df,2pd)//(CPCM)/M06-2X/6-31+G(d) computational model. The comparison of the observed rates of AcSCh+ oximolytic cleavage and both competitive AcSCh+ and consecutive pyridinium-4-oxime-ester hydrolytic cleavage revealed that the pyridinium-4-oximes cannot be classified as non-enzyme catalyst of the AcSCh+ hydrolysis but as the very effective esterolytic agents.


Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure.

  • Vesna Jaćević‎ et al.
  • Scientific reports‎
  • 2019‎

Therapeutic application of newly developed oximes is limited due to their adverse effects on different tissues. Within this article, it has been investigated which morphological changes could be observed in Wistar rats after the treatment with increasing doses of selected acetyl cholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. Subsequently, heart, diaphragm and musculus popliteus were obtained for pathohistological and semiquantitative analysis 24 hrs and 7 days after im administration of a single dose of 0.1 LD50, 0.5 LD50, and 1.0 LD50 of each oxime. Different muscle damage score was based on an estimation scale from 0 (no damage) to 5 (strong damage). In rats treated with 0.1 LD50 of each oxime, muscle fibres did not show any change. The intensive degeneration was found in all muscles after treatment with 0.5 LD50 of asoxime and obidoxime, respectively. Acute toxic muscle injury was developed within 7 days following treatment with 0.5 LD50 and 1.0 LD50 of each oxime, with the highest values in K048 and K075 group (P < 0.001 vs. control and asoxime), respectively. The early muscle alterations observed in our study seem to contribute to the pathogenesis of the oxime-induced toxic muscle injury, which probably manifests as necrosis and/or inflammation.


Nanoparticulate transport of oximes over an in vitro blood-brain barrier model.

  • Sylvia Wagner‎ et al.
  • PloS one‎
  • 2010‎

Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB.


Ether Derivatives of Naringenin and Their Oximes as Factors Modulating Bacterial Adhesion.

  • Anna Duda-Madej‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2023‎

Because of the close connection between adhesion and many vital cellular functions, the search for new compounds modulating the adhesion of bacteria belonging to the intestinal microbiota is a great challenge and a clinical need. Based on our previous studies, we discovered that O-lkyl naringenin derivatives and their oximes exhibit antimicrobial activity against antibiotic-resistant pathogens. The current study was aimed at determining the modulatory effect of these compounds on the adhesion of selected representatives of the intestinal microbiota: Escherichia coli, a commensal representative of the intestinal microbiota, and Enterococcus faecalis, a bacterium that naturally colonizes the intestines but has disease-promoting potential. To better reflect the variety of real-life scenarios, we performed these studies using two different intestinal cell lines: the physiologically functioning ("healthy") 3T3-L1 cell line and the disease-mimicking, cancerous HT-29 line. The study was performed in vitro under static and microfluidic conditions generated by the Bioflux system. We detected the modulatory effect of the tested O-alkyl naringenin derivatives on bacterial adhesion, which was dependent on the cell line studied and was more significant for E. coli than for E. faecalis. In addition, it was noticed that this activity was affected by the concentration of the tested compound and its structure (length of the carbon chain). In summary, O-alkyl naringenin derivatives and their oximes possess a promising modulatory effect on the adhesion of selected representatives of the intestinal microbiota.


Antiproliferative, Cytotoxic, and Apoptotic Activity of Steroidal Oximes in Cervicouterine Cell Lines.

  • Luis Sánchez-Sánchez‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Steroidal sapogenins have shown antiproliferative effects against several tumor cell lines; and their effects on human cancer cells are currently under study. Changes in the functionality on the steroidal structure make it possible to modify the biological activity of compounds. Herein, we report the synthesis and in vitro antitumor activity of two steroidal oxime compounds on cervical cancer cells. These derivatives were synthesized from the steroidal sapogenin diosgenin in good yields. The in vitro assays show that the steroidal oximes show significant antiproliferative activity compared to the one observed for diosgenin. Cell proliferation, cell death, and the cytotoxic effects were determined in both cervical cancer cells and human lymphocytes. The cancer cells showed apoptotic morphology and an increased presence of active caspase-3, providing the notion of a death pathway in the cell. Significantly, the steroidal oximes did not exert a cytotoxic effect on lymphocytes.


Acylation of Oleanolic Acid Oximes Effectively Improves Cytotoxic Activity in In Vitro Studies.

  • Barbara Bednarczyk-Cwynar‎ et al.
  • Pharmaceutics‎
  • 2024‎

(1) Background: The aim of the presented work was to obtain a set of oleanolic acid derivatives with a high level of anticancer activity and a low level of toxicity by applying an economic method. Three types of oleanolic acid derivatives were obtained: (i) derivatives of methyl oleanonate oxime, (ii) derivatives of methyl oleanonate oxime with an additional 11-oxo function, and (iii) derivatives of morpholide of oleanonic acid oxime. (2) Methods: The above oximes were acylated with aliphatic or aromatic carboxylic acid. The newly obtained compounds were subjected to ADMETox analysis and were also tested for cytotoxicity activity on the HeLa, KB, MCF-7, A-549, and HDF cell lines with the MTT assay. (3) Results: Among the tested acylated oximes of oleanolic acid, some derivatives, particularly those with two nitro groups attached to the aromatic ring, proved to be the most potent cytotoxic agents. These triterpene derivatives significantly inhibited the growth of the HeLa, KB, MCF-7, and A-549 cancer cell lines in micromolar concentrations. (4) Conclusions: The introduction of different moieties, particularly the 3,5-dinitro group, resulted in the synthesis of highly potent cytotoxic agents with favorable SI and ADMETox parameters.


Antimicrobial O-Alkyl Derivatives of Naringenin and Their Oximes Against Multidrug-Resistant Bacteria.

  • Anna Duda-Madej‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant Helicobacter pylori, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and beta-lactam-resistant Acinetobacter baumannii and Klebsiella pneumoniae. The minimum inhibitory concentrations (MICs), which provide a quantitative measure of antimicrobial activity, were in the low microgram range for the selected compounds. Checkerboard assays for the most active compounds in combination with antibiotics revealed interactions that varied from synergistic to neutral.


A New Class of Bi- and Trifunctional Sugar Oximes as Antidotes against Organophosphorus Poisoning.

  • Ophélie Da Silva‎ et al.
  • Journal of medicinal chemistry‎
  • 2022‎

Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.


New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds.

  • Maja Katalinić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3), derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease). Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.


Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity.

  • Joanna Kozłowska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

In our investigation, we concentrated on naringenin (NG)-a widely studied flavanone that occurs in citrus fruits. As a result of a reaction with a range of alkyl iodides, 7 novel O-alkyl derivatives of naringenin (7a⁻11a, 13a, 17a) were obtained. Another chemical modification led to 9 oximes of O-alkyl naringenin derivatives (7b⁻13b, 16b⁻17b) that were never described before. The obtained compounds were evaluated for their potential antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The results were reported as the standard minimal inhibitory concentration (MIC) values and compared with naringenin and its known O-alkyl derivatives. Compounds 4a, 10a, 12a, 14a, 4b, 10b, 11b, and 14b were described with MIC of 25 µg/mL or lower. The strongest bacteriostatic activity was observed for 7-O-butylnaringenin (12a) against S. aureus (MIC = 6.25 µg/mL). Moreover, the antitumor effect of flavonoids was examined on human colon cancer cell line HT-29. Twenty-six compounds were characterized as possessing an antiproliferative activity stronger than that of naringenin. The replacement of the carbonyl group with an oxime moiety significantly increased the anticancer properties. The IC50 values below 5 µg/mL were demonstrated for four oxime derivatives (8b, 11b, 13b and 16b).


Evaluation of the coordination preferences and catalytic pathways of heteroaxial cobalt oximes towards hydrogen generation.

  • Debashis Basu‎ et al.
  • Chemical science‎
  • 2016‎

Three new heteroaxial cobalt oxime catalysts, namely [CoIII(prdioxH)(4tBupy)(Cl)]PF6 (1), [CoIII(prdioxH)(4Pyrpy)(Cl)]PF6 (2), and [CoIII(prdioxH)(4Bzpy)(Cl)]PF6 (3) have been studied. These species contain chloro and substituted tert-butyl/pyrrolidine/benzoyl-pyridino ligands axially coordinated to a trivalent cobalt ion bound to the N4-oxime macrocycle (2E,2'E,3E,3'E)-3,3'-(propane-1,3-diylbis(azanylylidene))bis(butan-2-one)dioxime, abbreviated (prdioxH)- in its monoprotonated form. Emphasis was given to the spectroscopic investigation of the coordination preferences and spin configurations among the different 3d6 CoIII, 3d7 CoII, and 3d8 CoI oxidation states of the metal, and to the catalytic proton reduction with an evaluation of the pathways for the generation of H2via CoIII-H- or CoII-H- intermediates by mono and bimetallic routes. The strong field imposed by the (prdioxH)- ligand precludes the existence of high-spin configurations, and 6-coordinate geometry is favored by the LSCoIII species. Species 1 and 3 show a split CoIII/CoII electrochemical wave associated with partial chemical conversion to a [CoIII(prdioxH)Cl2] species, whereas 2 shows a single event. The reduction of these CoIII complexes yields LSCoII and LSCoI species in which the pyridine acts as the dominant axial ligand. In the presence of protons, the catalytically active CoI species generates a CoIII-H- hydride species that reacts heterolytically with another proton to generate dihydrogen. The intermediacy of a trifluoroacetate-bound CoIII/CoII couple in the catalytic mechanism is proposed. These results allow for a generalization of the behavior of heteroaxial cobalt macrocycles and serve as guidelines for the development of new catalysts based on macrocyclic frameworks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: