Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Insulin Null β-cells Have a Prohormone Processing Defect That Is Not Reversed by AAV Rescue of Proinsulin Expression.

  • Adam Ramzy‎ et al.
  • Endocrinology‎
  • 2022‎

Up to 6% of diabetes has a monogenic cause including mutations in the insulin gene, and patients are candidates for a gene therapy. Using a mouse model of permanent neonatal diabetes, we assessed the efficacy of an adeno-associated virus (AAV)-mediated gene therapy. We used AAVs with a rat insulin 1 promoter (Ins1) regulating a human insulin gene (INS; AAV Ins1-INS) or native mouse insulin 1 (Ins1; AAV Ins-Ins1) to deliver an insulin gene to β-cells of constitutive insulin null mice (Ins1-/-Ins2-/-) and adult inducible insulin-deficient mice [Ins1-/-Ins2f/f PdxCreER and Ins1-/-Ins2f/f mice administered AAV Ins1-Cre)]. Although AAV Ins1-INS could successfully infect and confer insulin expression to β-cells, insulin null β-cells had a prohormone processing defect. Secretion of abundant proinsulin transiently reversed diabetes. We reattempted therapy with AAV Ins1-Ins1, but Ins1-/-Ins2-/- β-cells still had a processing defect of both replaced Ins1 and pro-islet amyloid polypeptide (proIAPP). In adult inducible models, β-cells that lost insulin expression developed a processing defect that resulted in impaired proIAPP processing and elevated circulating proIAPP, and cells infected with AAV Ins1-Ins1 to rescue insulin expression secreted proinsulin. We assessed the subcellular localization of prohormone convertase 1/3 (PC1/3) and detected defective sorting of PC1/3 to glycogen-containing vacuoles and retention in the endoplasmic reticulum as a potential mechanism underlying defective processing. We provide evidence that persistent production of endogenous proinsulin within β-cells is necessary for β-cells to be able to properly store and process proinsulin.


Insulin-Deficient Mouse β-Cells Do Not Fully Mature but Can Be Remedied Through Insulin Replacement by Islet Transplantation.

  • Adam Ramzy‎ et al.
  • Endocrinology‎
  • 2018‎

Insulin receptor (IR) insufficiency in β-cells leads to impaired insulin secretion and reduced β-cell hyperplasia in response to hyperglycemia. Selective IR deficiency in β-cells in later embryological development may lead to compensatory β-cell hyperplasia. Although these findings suggest insulin signaling on the β-cell is important for β-cell function, they are confounded by loss of signaling by the insulinlike growth factors through the IR. To determine whether insulin itself is necessary for β-cell development and maturation, we performed a characterization of pancreatic islets in mice with deletions of both nonallelic insulin genes (Ins1-/-Ins2-/-). We immunostained neonatal Ins1-/-Ins2-/- and Ins1+/+Ins2+/+ pancreata and performed quantitative polymerase chain reaction on isolated neonatal islets. Insulin-deficient islets had reduced expression of factors normally expressed in maturing β-cells, including muscoloaponeurotic fibrosarcoma oncogene homolog A, homeodomain transcription factor 6.1, and glucose transporter 2. Ins1-/-Ins2-/-β-cells expressed progenitor factors associated with stem cells or dedifferentiated β-cells, including v-myc avian myolocytomatosis viral oncogene lung carcinoma derived and homeobox protein NANOG. We replaced insulin by injection or islet transplantation to keep mice alive into adulthood to determine whether insulin replacement was sufficient for the completed maturation of insulin-deficient β-cells. Short-term insulin glargine (Lantus®) injections partially rescued the β-cell phenotype, whereas long-term replacement of insulin by isogenic islet transplantation supported the formation of more mature β-cells. Our findings suggest that tightly regulated glycemia, insulin species, or other islet factors are necessary for β-cell maturation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: