Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 95 papers

Gli affects the stemness and prognosis of epithelial ovarian cancer via homeobox protein NANOG.

  • Huan Zhao‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Gli proteins are key transcription factors of the Hedgehog (HH) signaling pathway, which is associated with tumorigenesis and drug resistance. However, the role of the HH signaling pathway in epithelial ovarian cancer (EOC) remains unclear. Studies have demonstrated that in some tumors, homeobox protein NANOG (NANOG), a known stem cell marker, is a downstream effector of Gli. However, limited research has been conducted on the association between Gli and NANOG in EOC, particularly regarding their roles in the tumor stemness, such as tumor development, drug resistance and patient prognosis. Thus, the aim of the present study was to explore the aforementioned issues. In this study, Gli1, Gli2 and NANOG expression in EOC tissues was assessed using immunohistochemistry. Gene expression was also assessed using western blotting and reverse transcription‑quantitative PCR in SKOV3 cells treated with a Gli inhibitor and an HH agonist. Furthermore, cell proliferation, colony‑forming ability and cisplatin sensitivity were assessed using Cell Counting Kit‑8 and colony formation assays. The results showed that both Gli1 and NANOG were associated with cisplatin resistance and EOC disease stage, while the nuclear expression of Gli2 was significantly associated with cisplatin resistance. Together, the expression of Gli and NANOG predicted poor patient prognosis. Targeting Gli with GANT61 impeded tumor proliferation, reversed cisplatin resistance and colony formation, and reduced NANOG expression. To conclude, Gli and NANOG may be effective indicators of platinum resistance and prognosis in EOC. Targeting Gli may reduce the stemness of ovarian cancer cell, which may be achieved via indirect targeting of NANOG.


USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency.

  • Xingyu Liu‎ et al.
  • Signal transduction and targeted therapy‎
  • 2016‎

The homeobox transcription factor Nanog has a vital role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). Stabilization of Nanog proteins is essential for ESCs. The ubiquitin-proteasome pathway mediated by E3 ubiquitin ligases and deubiquitylases is one of the key ways to regulate protein levels and functions. Although ubiquitylation of Nanog catalyzed by the ligase FBXW8 has been demonstrated, the deubiquitylase that maintains the protein levels of Nanog in ESCs yet to be defined. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a deubiquitylase for Nanog, but not for Oct4 or Sox2. USP21 interacts with Nanog protein in ESCs in vivo and in vitro. The C-terminal USP domain of USP21 and the C-domain of Nanog are responsible for this interaction. USP21 deubiquitylates the K48-type linkage of the ubiquitin chain of Nanog, stabilizing Nanog. USP21-mediated Nanog stabilization is enhanced in mouse ESCs and this stabilization is required to maintain the pluripotential state of the ESCs. Depletion of USP21 in mouse ESCs leads to Nanog degradation and ESC differentiation. Overall, our results demonstrate that USP21 maintains the stemness of mouse ESCs through deubiquitylating and stabilizing Nanog.


Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway.

  • Cong Xu‎ et al.
  • Developmental cell‎
  • 2012‎

In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.


Prognostic significance of NANOG expression in solid tumors: a meta-analysis.

  • Lingqiong Zhao‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

NANOG is a tumor marker and indicates poor prognosis in various neoplasms; however, the evidence is controversial. This meta-analysis investigated the association of NANOG expression and clinicopathological features, and it impact on survival of patients with malignant tumors.


Ubiquitin-specific protease 21 regulating the K48-linked polyubiquitination of NANOG.

  • Seul-Ki Kwon‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

NANOG, one of homeobox proteins, plays a crucial role in regulating self-renewal and pluripotency for embryonic stem cells (ESCs). Since the ubiquitin-mediated degradation of NANOG protein has been implicated in its cellular functions involved in not only maintenance of pluripotency and pluripotent epiblast, but also prevention of primitive endoderm differentiation, the identification of ubiquitin ligases and deubiquitinating enzymes (DUBs) for NANOG is required to elucidate its protein stability and the regulation of cellular functions in these processes. In this study, we have identified a novel deubiquitinating enzyme USP21 which interacts with NANOG by both yeast two hybrid screening for DUBs and immunoprecipitation analyses. These analyses revealed that USP21 specifically regulates the Lys48-linked polyubiquitination and stability of NANOG, providing a new way of maintaining the pluripotency of ESCs and induced pluripotent stem cells (iPSCs).


Oncogenic function of the homeobox A13-long noncoding RNA HOTTIP-insulin growth factor-binding protein 3 axis in human gastric cancer.

  • Sophie Sw Wang‎ et al.
  • Oncotarget‎
  • 2016‎

To study the mechanisms of gastric tumorigenesis, we have established CSN cell line from human normal gastric mucosa, and CS12, a tumorigenic and invasive gastric cancer cell line from CSN passages. Many stem cell markers were expressed in both CSN and CS12 cells, but LGR5 and NANOG were expressed only in CS12 cells. Increased expression of homeobox A13 (HoxA13) and its downstream cascades was significant for the tumorigenic activity of CS12 cells, and was associated with recruitment of E2F-1 to HoxA13 promoter accompanied with increased trimethylation of histone H3 lysine 4 (H3K4me3) at the hypomethylated E2F motifs. Knockdown of HoxA13 caused the downregulation of long non-coding RNA HOTTIP and insulin growth factor-binding protein 3 (IGFBP-3) genes, indicating that both were targets of HoxA13. Concurrent regulation of HoxA13-HOTTIP was mediated by the mixed lineage leukemia-WD repeat domain 5 complex, which caused the trimethylation of H3K4 and then stimulated cell proliferation. HoxA13 transactivated the IGFBP-3 promoter through the HOX-binding site. Activation of IGFBP-3 stimulated the oncogenic potential and invasion activity. Increased expression of HoxA13 (63.2%) and IGFBP-3 (28.6%) was detected in human gastric cancer tissues and was found in the gastric cancer data of The Cancer Genome Atlas. Taken together, the HoxA13-HOTTIP-IGFBP-3 cascade is critical for the carcinogenic characteristics of CS12 cells.


Ventx factors function as Nanog-like guardians of developmental potential in Xenopus.

  • Pierluigi Scerbo‎ et al.
  • PloS one‎
  • 2012‎

Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.


NANOG regulates the proliferation of PCSCs via the TGF-β1/SMAD pathway.

  • Changming Liu‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2020‎

In prostate cancer, castration resistance is a factor that frequently leads to death in individuals with this disease. Recent studies have suggested that prostate cancer stem cells (PCSCs) are pivotal regulators in the establishment of castration resistance. The nanog homeobox (NANOG) and the transforming growth factor (TGF)-β1/drosophila mothers against decapentaplegic protein (SMAD) signaling pathways are involved in several cancer stem cells but are not involved in PCSCs. The purpose of this study is to investigate the effect of NANOG on the proliferation of PCSCs regulated by the TGF-β1/SMAD signaling pathway.


NANOG is multiply phosphorylated and directly modified by ERK2 and CDK1 in vitro.

  • Justin Brumbaugh‎ et al.
  • Stem cell reports‎
  • 2014‎

NANOG is a divergent homeobox protein and a core component of the transcriptional circuitry that sustains pluripotency and self-renewal. Although NANOG has been extensively studied on the transcriptional level, little is known regarding its posttranslational regulation, likely due to its low abundance and challenging physical properties. Here, we identify eleven phosphorylation sites on endogenous human NANOG, nine of which mapped to single amino acids. To screen for the signaling molecules that impart these modifications, we developed the multiplexed assay for kinase specificity (MAKS). MAKS simultaneously tests activity for up to ten kinases while directly identifying the substrate and exact site of phosphorylation. Using MAKS, we discovered site-specific phosphorylation by ERK2 and CDK1/CyclinA2, providing a putative link between key signaling pathways and NANOG.


Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma.

  • Rong Li‎ et al.
  • Oncotarget‎
  • 2016‎

Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome.The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from spheroid culture and induced their transdifferentiation by a two-stage method of knocking down HIF1α expression followed by vitamin Dand suberoylanilide hydroxamic acid (VD3/SAHA) treatment. We observed the induced cells lost stem-like characteristics, regained sensitivity to cisplatin, and displayed reduced tumorigenic capacity. These findings suggest that targeting stem-like cells by reverting them to more specialized state may be an approach to treat lung cancer.


Regulation of sarcomagenesis by the empty spiracles homeobox genes EMX1 and EMX2.

  • Manuel Pedro Jimenez-García‎ et al.
  • Cell death & disease‎
  • 2021‎

The EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2's potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


NANOGP1, a tandem duplicate of NANOG, exhibits partial functional conservation in human naïve pluripotent stem cells.

  • Katsiaryna Maskalenka‎ et al.
  • Development (Cambridge, England)‎
  • 2023‎

Gene duplication events can drive evolution by providing genetic material for new gene functions, and they create opportunities for diverse developmental strategies to emerge between species. To study the contribution of duplicated genes to human early development, we examined the evolution and function of NANOGP1, a tandem duplicate of the transcription factor NANOG. We found that NANOGP1 and NANOG have overlapping but distinct expression profiles, with high NANOGP1 expression restricted to early epiblast cells and naïve-state pluripotent stem cells. Sequence analysis and epitope-tagging revealed that NANOGP1 is protein coding with an intact homeobox domain. The duplication that created NANOGP1 occurred earlier in primate evolution than previously thought and has been retained only in great apes, whereas Old World monkeys have disabled the gene in different ways, including homeodomain point mutations. NANOGP1 is a strong inducer of naïve pluripotency; however, unlike NANOG, it is not required to maintain the undifferentiated status of human naïve pluripotent cells. By retaining expression, sequence and partial functional conservation with its ancestral copy, NANOGP1 exemplifies how gene duplication and subfunctionalisation can contribute to transcription factor activity in human pluripotency and development.


NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells.

  • Maria Pitrone‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting patients (23 men, 47 women; age 45 ± 10; BMI between 25 ± 5 and 30 ± 5 range) undergoing elective open-abdominal surgery. Sphere-forming capability was evaluated by plating cells in low adhesion plastic. Stem cell markers CD90, CD105, CD29, CD31, CD45 and CD146 were analyzed by flow cytometry, and the stem cell transcription factors NANOG, SOX2 and OCT4 were detected by immunoblotting and real-time PCR. NANOG, SOX2 and OCT4 interplay was explored by gene silencing. ASCs from VAT and SAT confirmed their mesenchymal stem cell (MSC) phenotype expressing the specific MSC markers CD90, CD105, NANOG, SOX2 and OCT4. NANOG silencing induced a significant OCT4 (70 ± 0.05%) and SOX2 (75 ± 0.03%) downregulation, whereas SOX2 silencing did not affect NANOG gene expression. Adipose tissue is an important source of MSC, and siRNA experiments endorse a hierarchical role of NANOG in the complex transcription network that regulates pluripotency.


Molecular characterization and expression patterns of Nanog gene validating its involvement in the embryonic development and maintenance of spermatogonial stem cells of farmed carp, Labeo rohita.

  • Swagat K Patra‎ et al.
  • Journal of animal science and biotechnology‎
  • 2018‎

The homeobox containing transcription factor Nanog plays crucial roles in embryonic development/proliferation and/or maintenance of spermatogonial stem cells (SSCs) via interacting with transcription factors such as Oct4 and Sox2 in mammals. However, knowledge of its exact mechanistic pathways remains unexploited. Very little is known about teleost Nanog. Information on the Nanog gene of farmed rohu carp (Labeo rohita) is lacking. We cloned and characterized the Nanog gene of rohu carp to understand the expression pattern in early developmental stages and also deduced the genomic organization including promoter elements.


PBX homeobox 1 enhances hair follicle mesenchymal stem cell proliferation and reprogramming through activation of the AKT/glycogen synthase kinase signaling pathway and suppression of apoptosis.

  • Yixu Jiang‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

PBX homeobox 1 (PBX1) is involved in the maintenance of the pluripotency of human embryonic and hematopoietic stem cells; however, the effects of PBX1 in the self-renewal and reprogramming of hair follicle mesenchymal stem cells (HF-MSCs) are unclear. The AKT/glycogen synthase kinase (GSK) 3β pathway regulates cell metabolism, proliferation, apoptosis, and reprogramming, and p16 and p21, which act downstream of this pathway, regulate cell proliferation, cell cycle, and apoptosis induced by reprogramming. Here, we aimed to elucidate the roles of PBX1 in regulating the proliferation and reprogramming of HF-MSCs.


Protein arginine methyltransferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor.

  • Haishan Lin‎ et al.
  • Journal of Cancer‎
  • 2018‎

Objective: Cancer stem cells play a crucial role in tumor multidrug resistance and metastasis, which can produce heterogeneous tumor cells and have self-renewal ability. The related literature reported that PRMT8 was overexpressed in tumor stem cells and pluripotent stem cells. However, it's unclear how PRMT8 acts on the stemness of colon tumor cells. This study is designed to detect functions by transfecting with PRMT8 plasmid to colon cancer cells. Methods: In this study we investigated colon cancer cell sphere and its differential expression of PRMT8 compared with colon cancer cells grown by static adherence. RKO Sphere formation assay was used to identify CSCs and verified PRMT8 and pluripotent transcription factors SOX2, OCT4, Nanog expression level in colon cell sphere. Colon cancer cell HCT-8 and RKO up-regulated PRMT8 expression by being transfected with PRMT8 plasmid to evaluate its effect on the stemness of colon tumor cell. Results: In RKO cell sphere, stem cell surface marker CD133 and CD44 were highly expressed. And PRMT8, SOX2, OCT4 and Nanog were also highly expressed in RKO cell sphere. After PRMT8 was up-regulated in HCT-8 and RKO cells, flow cytometry proved that PRMT8 group cells have a significant increase of the side population (SP) cells with cancer stem cell surface markers CD133 and CD44. And overexpression of PRMT8 in HCT-8 and RKO cells facilitated their aggressive traits, which contained proliferation, invasion and migration, as well as leading to their drug resistance. PRMT8 may play a role in colon cancer stem cells (CSC) through its regulation of pluripotent transcription factors, such as Nanog Homeobox (Nanog), octamer-binding transcription factor-4 (Oct4) and SRY-related high-mobility-group(HMG)-box protein-2 (Sox2). Conclusion: PRMT8 may promote the formation of colon cancer stem cells and, thus, be considered a potential therapeutic target for the treatment of malignant colon tumor.


Serine-Threonine Kinase Receptor-Associated Protein (STRAP) Knockout Decreases the Malignant Phenotype in Neuroblastoma Cell Lines.

  • Laura V Bownes‎ et al.
  • Cancers‎
  • 2021‎

Background: Serine-threonine kinase receptor-associated protein (STRAP) plays an important role in neural development but also in tumor growth. Neuroblastoma, a tumor of neural crest origin, is the most common extracranial solid malignancy of childhood and it continues to carry a poor prognosis. The recent discovery of the role of STRAP in another pediatric solid tumor, osteosarcoma, and the known function of STRAP in neural development, led us to investigate the role of STRAP in neuroblastoma tumorigenesis. Methods: STRAP protein expression was abrogated in two human neuroblastoma cell lines, SK-N-AS and SK-N-BE(2), using transient knockdown with siRNA, stable knockdown with shRNA lentiviral transfection, and CRISPR-Cas9 genetic knockout. STRAP knockdown and knockout cells were examined for phenotypic alterations in vitro and tumor growth in vivo. Results: Cell proliferation, motility, and growth were significantly decreased in STRAP knockout compared to wild-type cells. Indicators of stemness, including mRNA abundance of common stem cell markers Oct4, Nanog, and Nestin, the percentage of cells expressing CD133 on their surface, and the ability to form tumorspheres were significantly decreased in the STRAP KO cells. In vivo, STRAP knockout cells formed tumors less readily than wild-type tumor cells. Conclusion: These novel findings demonstrated that STRAP plays a role in tumorigenesis and maintenance of neuroblastoma stemness.


Low-dose irradiation of mouse embryos increases Smad-p21 pathway activity and preserves pluripotency.

  • Masami Hayashi‎ et al.
  • Journal of assisted reproduction and genetics‎
  • 2018‎

To study the outcomes of mouse preimplantation embryos irradiated with low doses of X-rays (≤ 1 Gy) and investigate apoptosis and pluripotency of the irradiated embryos.


In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

  • Lin Xie‎ et al.
  • Stem cell reviews and reports‎
  • 2013‎

Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.


Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma.

  • Chenyu Ding‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Temozolomide (TMZ) resistance limits its application in glioma. Exosome can carry circular RNAs (circRNAs) to regulate drug resistance via sponging microRNAs (miRNAs). miRNAs can control mRNA expression by regulate the interaction with 3'UTR and methylation. Nanog homeobox (NANOG) is an important biomarker for TMZ resistance. Hitherto, it is unknown about the role of exosomal hsa_circ_0072083 (circ_0072083) in TMZ resistance in glioma, and whether it is associated with NANOG via regulating miRNA sponge and methylation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: