Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Serine-Threonine Kinase Receptor-Associated Protein (STRAP) Knockout Decreases the Malignant Phenotype in Neuroblastoma Cell Lines.

  • Laura V Bownes‎ et al.
  • Cancers‎
  • 2021‎

Background: Serine-threonine kinase receptor-associated protein (STRAP) plays an important role in neural development but also in tumor growth. Neuroblastoma, a tumor of neural crest origin, is the most common extracranial solid malignancy of childhood and it continues to carry a poor prognosis. The recent discovery of the role of STRAP in another pediatric solid tumor, osteosarcoma, and the known function of STRAP in neural development, led us to investigate the role of STRAP in neuroblastoma tumorigenesis. Methods: STRAP protein expression was abrogated in two human neuroblastoma cell lines, SK-N-AS and SK-N-BE(2), using transient knockdown with siRNA, stable knockdown with shRNA lentiviral transfection, and CRISPR-Cas9 genetic knockout. STRAP knockdown and knockout cells were examined for phenotypic alterations in vitro and tumor growth in vivo. Results: Cell proliferation, motility, and growth were significantly decreased in STRAP knockout compared to wild-type cells. Indicators of stemness, including mRNA abundance of common stem cell markers Oct4, Nanog, and Nestin, the percentage of cells expressing CD133 on their surface, and the ability to form tumorspheres were significantly decreased in the STRAP KO cells. In vivo, STRAP knockout cells formed tumors less readily than wild-type tumor cells. Conclusion: These novel findings demonstrated that STRAP plays a role in tumorigenesis and maintenance of neuroblastoma stemness.


9-cis-UAB30, a novel rexinoid agonist, decreases tumorigenicity and cancer cell stemness of human neuroblastoma patient-derived xenografts.

  • Raoud Marayati‎ et al.
  • Translational oncology‎
  • 2021‎

Retinoic acid (RA) therapy has been utilized as maintenance therapy for high-risk neuroblastoma, but over half of patients treated with RA relapse. Neuroblastoma stem cell-like cancer cells (SCLCCs) are a subpopulation of cells characterized by the expression of the cell surface marker CD133 and are hypothesized to contribute to drug resistance and disease relapse. A novel rexinoid compound, 9-cis-UAB30 (UAB30), was developed having the same anti-tumor effects as RA but a more favorable toxicity profile. In the current study, we investigated the efficacy of UAB30 in neuroblastoma patient-derived xenografts (PDX). Two PDXs, COA3 and COA6, were utilized and alterations in the malignant phenotype were assessed following treatment with RA or UAB30. UAB30 significantly decreased proliferation, viability, and motility of both PDXs. UAB30 induced cell-cycle arrest as demonstrated by the significant increase in percentage of cells in G1 (COA6: 33.7 ± 0.7 vs. 43.3 ± 0.7%, control vs. UAB30) and decrease in percentage of cells in S phase (COA6: 44.7 ± 1.2 vs. 38.6 ± 1%, control vs. UAB30). UAB30 led to differentiation of PDX cells, as evidenced by the increase in neurite outgrowth and mRNA abundance of differentiation markers. CD133 expression was decreased by 40% in COA6 cells after UAB30. The ability to form tumorspheres and mRNA abundance of known stemness markers were also significantly decreased following treatment with UAB30, further indicating decreased cancer cell stemness. These results provide evidence that UAB30 decreased tumorigenicity and cancer cell stemness in neuroblastoma PDXs, warranting further exploration as therapy for high-risk neuroblastoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: