Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

AmotL2 integrates polarity and junctional cues to modulate cell shape.

  • Sara Hultin‎ et al.
  • Scientific reports‎
  • 2017‎

The assembly of individual epithelial or endothelial cells into a tight cellular sheet requires stringent control of cell packing and organization. These processes are dependent on the establishment and further integration of cellular junctions, the cytoskeleton and the formation of apical-basal polarity. However, little is known how these subcellular events are coordinated. The (Angiomotin) Amot protein family consists of scaffold proteins that interact with junctional cadherins, polarity proteins and the cytoskeleton. In this report, we have studied how these protein complexes integrate to control cellular shapes consistent with organ function. Using gene-inactivating studies in zebrafish and cell culture systems in vitro, we show that Par3 to be essential for localization of AmotL2 to cellular junctions to associate with VE/E-cadherin and subsequently the organization of radial actin filaments. Our data provide mechanistic insight in how critical processes such as aortic lumen expansion as well as epithelial packing into hexagonal shapes are controlled.


The coxsackie and adenovirus receptor (CAR) is required for renal epithelial differentiation within the zebrafish pronephros.

  • Elisabeth Raschperger‎ et al.
  • Developmental biology‎
  • 2008‎

The coxsackie and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily and a component of vertebrate tight junctions. CAR protein is widely expressed in fish and mammals in organs of epithelial origin suggesting possible functions in epithelial biology. In order to gain insight into its function, we knocked the CAR gene down in zebrafish using antisense morpholinos. We identified a requirement for CAR in the terminal differentiation of glomerular podocytes and pronephric tubular epithelia. Podocytes differentiate in CAR morphants but are not able to elaborate a regularly patterned architecture of foot processes. In the tubules, CAR was required for the apposition of plasma membranes from adjacent epithelial cells but did not appear to be necessary for the formation of tight junctions. Additionally, tubular epithelia lacking CAR were not able to elaborate apical brush border microvilli. These results establish a requirement for CAR in the terminal differentiation of renal glomerular and tubular cell types.


The E-cadherin/AmotL2 complex organizes actin filaments required for epithelial hexagonal packing and blastocyst hatching.

  • Sebastian Hildebrand‎ et al.
  • Scientific reports‎
  • 2017‎

Epithelial cells connect via cell-cell junctions to form sheets of cells with separate cellular compartments. These cellular connections are essential for the generation of cellular forms and shapes consistent with organ function. Tissue modulation is dependent on the fine-tuning of mechanical forces that are transmitted in part through the actin connection to E-cadherin as well as other components in the adherens junctions. In this report we show that p100 amotL2 forms a complex with E-cadherin that associates with radial actin filaments connecting cells over multiple layers. Genetic inactivation or depletion of amotL2 in epithelial cells in vitro or zebrafish and mouse in vivo, resulted in the loss of contractile actin filaments and perturbed epithelial packing geometry. We further showed that AMOTL2 mRNA and protein was expressed in the trophectoderm of human and mouse blastocysts. Genetic inactivation of amotL2 did not affect cellular differentiation but blocked hatching of the blastocysts from the zona pellucida. These results were mimicked by treatment with the myosin II inhibitor blebbistatin. We propose that the tension generated by the E-cadherin/AmotL2/actin filaments plays a crucial role in developmental processes such as epithelial geometrical packing as well as generation of forces required for blastocyst hatching.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: